Compare commits

...

11 Commits

Author SHA1 Message Date
4895c94d90 main: handle various forms of process termination more safely
This attempts to solve the problem where, if the rotator is actively
rotating and the program is killed, the LabJack will not be reset and
the rotator will keep running. We install various signal handlers to
try to catch common cases (ctrl+c, terminal getting closed out from
under us). There are still ways to end the process that leave the
LabJack running (such as if it crashes, though there are currently no
known crashes), but I don't think it's possible to completely avoid
that.

The posix signal handling story is a bit ugly. Trying to do pretty much
anything in the asynchronous signal handlers will cause undefined
behavior. Acquiring a mutex and joining a thread are right at the top
of the very long list of things that you cannot do safely in an async
signal handler. One potential solution to this problem is to replace
locks with atomics, which isn't appropriate for our use case (we have
to make sure the controller thread actually has shut down the LabJack
before exiting the process). The other well-known solution is to
manually create a thread that listens for signals synchronously, and
this is the approach taken here.

After having done this, I had the thought that because we are linking
libc anyway, an `atexit` handler might work, but I don't actually know
if it would, and I don't think it's worthwhile to do the work at this
point.
2024-08-01 13:51:38 -07:00
c8cfc95938 controller: fix bogus timer implementation
The previous version was using wall clock time for the timer because I
am an idiot. During time syncs or possibly due to other reasons, this
could jump backwards and cause an overflow. This obviously needed a
monotonic clock source, and now it has one.
2024-07-30 12:59:36 -07:00
a3b4ffc76d rotctl: only support long quit command
gpredict actually sends either q or Q when disconnecting. This is not
actually a supported command according to my reading of the rotctld
documentation. `q`/`Q` for quitting is limited to the interactive
rotctl prompt.

For autoparking, we don't want to quit when gpredict disconnects. Also
in general, we probably don't want to quit when gpredict disconnects.
I still want to have a quit command when using this via netcat or
whatever, so make them a form gpredict probably does not send.
2024-07-18 23:36:09 -07:00
c295c941e9 rotctl: actually quit when receiving the quit message 2024-07-18 23:36:09 -07:00
de487d18c5 rotctl: add autopark functionality
Since gpredict doesn't have a park button or anything, this will just
automatically park the antenna when the gpredict rotator controller
disconnects. This may or may not actually be a good idea. We will see.
2024-07-18 23:36:09 -07:00
61c10df63d controller: restructure control loop
This should have been multiple commits, but it isn't. Sue me. This
change has two main goals:

1. Sample feedback at the beginning of the control loop iteration so
   that it is always up-to-date when we are computing the actual drive
   outputs. This means we're doing twice the amount of communication
   with the labjack (previously, setting the output and reading the
   feedback was done with a singe command). However, this makes the
   loop structure much more standard, and it means that we aren't
   constantly operating on feedback that is stale by one loop
   interval.

2. Sample feedback into a (configurable size) buffer. This lets us
   operate on aggregated feedback rather than on a single instantaneous
   data point. Right now, feedback is computed as a moving average,
   which acts as a rudimentary low-pass filter, reducing spurious
   single-loop actions due to feedback spikes or other noise. However,
   the other reason to aggregate some backwards data is that it will
   let us do automatic stall detection in a simple way, although that
   is not currently done.
2024-07-18 21:47:50 -07:00
153dde40aa readme: the Windows situation has been altered
Pray I do not alter it further.
2024-07-15 17:55:31 -07:00
4777d04594 build: disable libusb logging by default
It is quite verbose and not very useful.
2024-07-15 17:55:31 -07:00
eb7ad4ef9e main: hook up calibration stubs
I guess I will be finishing this later.
2024-07-15 17:55:31 -07:00
2194dd4a8c config: make it possible not to leak
Using the GPA is a bit annoying sometimes. The other option would be to
just use page allocator to allocate the config and bypass the GPA.
2024-07-15 17:55:31 -07:00
de76cce706 controller: make controller info printout more useful
This has a lot more relevant information now. Anyway, this has been
tested on real hardware, and it appears to work pretty well. I am
considering changing the control loop so that it isn't always
operating on stale feedback (two LabJack calls per loop when actively
controlling pointing). Also the calibration routines need to be
implemented.
2024-07-15 17:55:31 -07:00
10 changed files with 484 additions and 146 deletions

View File

@@ -4,12 +4,24 @@ pub fn build(b: *std.Build) void {
const target = b.standardTargetOptions(.{});
const optimize = b.standardOptimizeOption(.{});
const use_udev = b.option(
const libusb_use_udev = b.option(
bool,
"use_udev",
"link and use udev (Linux only. Default: false)",
) orelse false;
const libusb_enable_logging = b.option(
bool,
"libusb_enable_logging",
"enable libusb's built-in logging (Default: false)",
) orelse false;
const libusb_enable_debug_logging = b.option(
bool,
"libusb_enable_debug_logging",
"enable libusb's debug logging (Default: false)",
) orelse false;
const exe = b.addExecutable(.{
.name = "yaes",
.root_source_file = b.path("src/main.zig"),
@@ -38,7 +50,13 @@ pub fn build(b: *std.Build) void {
} else {
const ljacklm_dep = b.dependency(
"ljacklm",
.{ .target = target, .optimize = optimize, .use_udev = use_udev },
.{
.target = target,
.optimize = optimize,
.libusb_use_udev = libusb_use_udev,
.libusb_enable_logging = libusb_enable_logging,
.libusb_enable_debug_logging = libusb_enable_debug_logging,
},
);
exe.linkLibrary(ljacklm_dep.artifact("ljacklm"));
}

View File

@@ -4,10 +4,22 @@ pub fn build(b: *std.Build) !void {
const target = b.standardTargetOptions(.{});
const optimize = b.standardOptimizeOption(.{});
const use_udev = b.option(
const libusb_use_udev = b.option(
bool,
"use_udev",
"link and use udev (Linux only. Default: false)",
"libusb_use_udev",
"libusb: link and use udev (Linux only. Default: false)",
) orelse false;
const libusb_enable_logging = b.option(
bool,
"libusb_enable_logging",
"enable libusb's built-in logging (Default: false)",
) orelse false;
const libusb_enable_debug_logging = b.option(
bool,
"libusb_enable_debug_logging",
"enable libusb's debug logging (Default: false)",
) orelse false;
const liblabjackusb = b.addStaticLibrary(.{
@@ -31,7 +43,13 @@ pub fn build(b: *std.Build) !void {
const usb_dep = b.dependency(
"usb",
.{ .target = target, .optimize = optimize, .use_udev = use_udev },
.{
.target = target,
.optimize = optimize,
.use_udev = libusb_use_udev,
.enable_logging = libusb_enable_logging,
.enable_debug_logging = libusb_enable_debug_logging,
},
);
liblabjackusb.linkLibrary(usb_dep.artifact("usb"));

View File

@@ -4,10 +4,22 @@ pub fn build(b: *std.Build) !void {
const target = b.standardTargetOptions(.{});
const optimize = b.standardOptimizeOption(.{});
const use_udev = b.option(
const libusb_use_udev = b.option(
bool,
"use_udev",
"link and use udev (Linux only. Default: false)",
"libusb_use_udev",
"libusb: link and use udev (Linux only. Default: false)",
) orelse false;
const libusb_enable_logging = b.option(
bool,
"libusb_enable_logging",
"enable libusb's built-in logging (Default: false)",
) orelse false;
const libusb_enable_debug_logging = b.option(
bool,
"libusb_enable_debug_logging",
"enable libusb's debug logging (Default: false)",
) orelse false;
const libljacklm = b.addStaticLibrary(.{
@@ -30,7 +42,13 @@ pub fn build(b: *std.Build) !void {
const usb_dep = b.dependency(
"labjackusb",
.{ .target = target, .optimize = optimize, .use_udev = use_udev },
.{
.target = target,
.optimize = optimize,
.libusb_use_udev = libusb_use_udev,
.libusb_enable_logging = libusb_enable_logging,
.libusb_enable_debug_logging = libusb_enable_debug_logging,
},
);
libljacklm.linkLibrary(usb_dep.artifact("labjackusb"));

16
deps/libusb/build.zig vendored
View File

@@ -10,6 +10,18 @@ pub fn build(b: *std.Build) !void {
"link and use udev (Linux only. Default: false)",
) orelse false;
const enable_logging = b.option(
bool,
"enable_logging",
"enable libusb's built-in logging (Default: false)",
) orelse false;
const enable_debug_logging = b.option(
bool,
"enable_debug_logging",
"enable libusb's debug logging (Default: false)",
) orelse false;
const libusb = b.addStaticLibrary(.{
.name = "usb",
.target = target,
@@ -59,8 +71,8 @@ pub fn build(b: *std.Build) !void {
.{ .style = .{ .autoconf = b.path("config.h.in") } },
.{
.DEFAULT_VISIBILITY = .@"__attribute__ ((visibility (\"default\")))",
.ENABLE_DEBUG_LOGGING = oneOrNull(optimize == .Debug),
.ENABLE_LOGGING = oneOrNull(optimize == .Debug),
.ENABLE_DEBUG_LOGGING = oneOrNull(enable_debug_logging),
.ENABLE_LOGGING = oneOrNull(enable_logging),
.HAVE_ASM_TYPES_H = null,
.HAVE_CLOCK_GETTIME = oneOrNull(linux_target),
.HAVE_DECL_EFD_CLOEXEC = oneOrNull(linux_target),

View File

@@ -24,7 +24,7 @@ Unfortunately, all platforms have additional steps that must be taken (some easi
#### Windows
This compiles for, and runs on, Windows. However, the Labjack U12 by default gets assigned the Windows USB HID driver, which causes the USB report descriptor control transfer read to get mangled for mystery reasons that presumably made sense to some egghead at Microsoft at some point in time. Fortunately, this can be relatively easily fixed by using a tool like [zadig] to set the Labjack U12 to use the WinUSB driver instead of the HID driver. This is not an endorsement of the above outlined process, but rather an explanation for persons either foolish or desperate.
This compiles for, and runs on, Windows. However, in order for it to work out of the box, it has to link against the (proprietary) Windows LabJack U12 driver instead of the open source libUSB driver. This has two main limitations: the Windows driver is only available for the `x86` and `x86-64` architectures, and it is exclusively distributed as a dynamic library, meaning that `yaes.exe` must be distributed alongside `ljackuw.dll`. When building for Windows targets, the appropriate library file will be copied to the binary installation directory (`zig-out/bin` by default).
#### macOS
@@ -33,5 +33,3 @@ This works on macOS, though it has to be run with `sudo`, as access to the USB h
#### Linux
You probably need to install the included udev rules file in order for the USB device to be accessible as a user. This is buried in the source tree as `deps/labjack/exodriver/90-labjack.rules`. These should probably go in `/etc/udev/rules.d` if you are installing them manually and I have properly understood the various Linux folder conventions.
[zadig]: https://zadig.akeo.ie

View File

@@ -5,31 +5,37 @@ const lj = @import("./labjack.zig");
const Config = @This();
var global_internal: Config = undefined;
pub const global: *const Config = &global_internal;
var global_internal: std.json.Parsed(Config) = undefined;
pub const global: *const Config = &global_internal.value;
pub fn load(allocator: std.mem.Allocator, reader: anytype, err_writer: anytype) !void {
var jread = std.json.Reader(1024, @TypeOf(reader)).init(allocator, reader);
defer jread.deinit();
global_internal = try std.json.parseFromTokenSourceLeaky(
global_internal = try std.json.parseFromTokenSource(
Config,
allocator,
&jread,
.{},
);
try global_internal.validate(err_writer);
try global.validate(err_writer);
}
pub fn loadDefault(allocator: std.mem.Allocator) void {
_ = allocator;
global_internal = .{};
const arena = allocator.create(std.heap.ArenaAllocator) catch unreachable;
arena.* = std.heap.ArenaAllocator.init(allocator);
global_internal = .{
.arena = arena,
.value = .{},
};
}
pub fn destroy(allocator: std.mem.Allocator) void {
pub fn deinit() void {
// TODO: implement this probably
_ = allocator;
const allocator = global_internal.arena.child_allocator;
global_internal.arena.deinit();
allocator.destroy(global_internal.arena);
}
pub fn validate(self: Config, err_writer: anytype) !void {
@@ -86,6 +92,7 @@ pub fn validate(self: Config, err_writer: anytype) !void {
rotctl: RotControlConfig = .{
.listen_address = "127.0.0.1",
.listen_port = 4533,
.autopark = false,
},
labjack: LabjackConfig = .{
.device = .autodetect,
@@ -121,6 +128,7 @@ controller: ControllerConfig = .{
// this is a symmetric mask, so the minimum usable elevation is elevation_mask deg
// and the maximum usable elevation is 180 - elevation_mask deg
.elevation_mask = 0.0,
.feedback_window_samples = 3,
},
pub const VoltAngle = struct { voltage: f64, angle: f64 };
@@ -144,6 +152,7 @@ pub const MinMax = struct {
const RotControlConfig = struct {
listen_address: []const u8,
listen_port: u16,
autopark: bool,
};
const LabjackConfig = struct {
@@ -173,6 +182,8 @@ const ControllerConfig = struct {
angle_offset: AzEl,
elevation_mask: f64,
feedback_window_samples: u8,
const OutPair = struct {
increase: lj.DigitalOutputChannel,
decrease: lj.DigitalOutputChannel,

View File

@@ -10,12 +10,9 @@ const log = std.log.scoped(.RotCtl);
writer: std.io.BufferedWriter(512, std.net.Stream.Writer),
running: bool,
rotator: YaesuController,
rotator: *YaesuController,
pub fn run(allocator: std.mem.Allocator) !void {
// var server = std.net.StreamServer.init(.{ .reuse_address = true });
// defer server.deinit();
const listen_addr = try std.net.Address.parseIp(
config.rotctl.listen_address,
config.rotctl.listen_port,
@@ -30,20 +27,19 @@ pub fn run(allocator: std.mem.Allocator) !void {
var interface: RotCtl = .{
.writer = undefined,
.running = true,
.rotator = try YaesuController.init(allocator),
.rotator = try YaesuController.create(allocator),
};
while (true) {
while (interface.running) {
const client = try server.accept();
defer {
log.info("disconnecting client", .{});
interface.rotator.stop();
if (!config.rotctl.autopark)
interface.rotator.stop();
client.stream.close();
}
interface.writer = .{ .unbuffered_writer = client.stream.writer() };
interface.running = true;
defer interface.running = false;
log.info("client connected from {}", .{client.address});
@@ -60,7 +56,13 @@ pub fn run(allocator: std.mem.Allocator) !void {
std.mem.trim(u8, fbs.getWritten(), &std.ascii.whitespace),
) catch break;
}
// loop ended due to client disconnect
if (interface.running and config.rotctl.autopark)
interface.rotator.startPark();
}
interface.rotator.control_thread.join();
}
fn write(self: *RotCtl, buf: []const u8) !void {
@@ -172,7 +174,6 @@ fn handleHamlibCommand(
if (first.len == 1 or first[0] == '\\') {
switch (first[0]) {
// NOTE: this is not technically supported by rotctld.
'q', 'Q' => try self.quit(first, &tokens),
'S' => try self.stop(first, &tokens),
'K' => try self.park(first, &tokens),
'p' => try self.getPosition(first, &tokens),
@@ -243,8 +244,8 @@ const HamlibCommand = struct {
};
const rotctl_commands = [_]HamlibCommand{
.{ .short = 'q', .callback = quit }, // quit
.{ .short = 'Q', .callback = quit }, // quit
.{ .long = "quit", .callback = quit },
.{ .long = "exit", .callback = quit },
.{ .long = "AOS", .callback = blindAck },
.{ .long = "LOS", .callback = blindAck },
.{ .short = 'P', .long = "set_pos", .callback = setPosition }, // azimuth: f64, elevation: f64

View File

@@ -8,6 +8,8 @@ const log = std.log.scoped(.yaesu_controller);
const YaesuController = @This();
pub var singleton: ?*YaesuController = null;
control_thread: std.Thread,
lock: *std.Thread.Mutex,
controller: *const Controller,
@@ -17,22 +19,47 @@ pub const AzEl = struct {
elevation: f64,
};
pub fn init(allocator: std.mem.Allocator) !YaesuController {
const lock = try allocator.create(std.Thread.Mutex);
errdefer allocator.destroy(lock);
lock.* = .{};
pub const CalibrationRoutine = enum {
feedback,
orientation,
};
pub fn calibrate(allocator: std.mem.Allocator, routine: CalibrationRoutine) !void {
const controller = try YaesuController.create(allocator);
defer {
controller.quit();
controller.control_thread.join();
}
switch (routine) {
.feedback => try controller.calibrate_feedback(),
.orientation => try controller.calibrate_orientation(),
}
}
pub fn create(allocator: std.mem.Allocator) !*YaesuController {
if (singleton) |_| {
log.err("Controller singleton already exists.", .{});
return error.AlreadyInitialized;
}
const controller = try allocator.create(Controller);
errdefer allocator.destroy(controller);
controller.init(lock);
controller.* = try Controller.init(allocator);
errdefer controller.deinit(allocator);
// do this in the main thread so we can throw the error about it synchronously.
try controller.connectLabjack();
return .{
const self = try allocator.create(YaesuController);
errdefer allocator.destroy(self);
self.* = .{
.control_thread = try std.Thread.spawn(.{}, runController, .{controller}),
.lock = lock,
.lock = &controller.lock,
.controller = controller,
};
singleton = self;
return self;
}
fn inRange(request: f64, comptime dof: enum { azimuth, elevation }) bool {
@@ -73,7 +100,7 @@ pub fn setTarget(self: YaesuController, target: AzEl) error{OutOfRange}!void {
const controller = @constCast(self.controller);
controller.target = masked_target;
controller.requested_state = .running;
controller.requestState(.running);
}
pub fn currentPosition(self: YaesuController) AzEl {
@@ -83,16 +110,15 @@ pub fn currentPosition(self: YaesuController) AzEl {
return self.controller.position;
}
pub fn startCalibration(self: YaesuController) void {
// there are two different types of calibration:
// 1. feedback calibration, running to the extents of the rotator
// 2. sun calibration, which determines the azimuth and elevation angle
// offset between the rotator's physical stops and geodetic north
//
// The former is (fairly) trivial to automate, just run until stall
// (assuming there's no deadband in the feedback). The latter requires
// manual input as the human is the feedback hardware in the loop.
_ = self;
pub fn waitForUpdate(self: YaesuController) AzEl {
const controller = @constCast(self.controller);
self.lock.lock();
defer self.lock.unlock();
controller.condition.wait(self.lock);
return controller.position;
}
pub fn quit(self: YaesuController) void {
@@ -100,7 +126,7 @@ pub fn quit(self: YaesuController) void {
defer self.lock.unlock();
const controller = @constCast(self.controller);
controller.requested_state = .stopped;
controller.requestState(.stopped);
}
pub fn stop(self: YaesuController) void {
@@ -109,13 +135,25 @@ pub fn stop(self: YaesuController) void {
const controller = @constCast(self.controller);
controller.target = controller.position;
controller.requested_state = .idle;
controller.requestState(.idle);
}
pub fn startPark(self: YaesuController) void {
self.setTarget(config.controller.parking_posture) catch unreachable;
}
fn calibrate_feedback(self: YaesuController) !void {
_ = self;
log.err("this isn't implemented yet, sorry.", .{});
return error.NotImplemented;
}
fn calibrate_orientation(self: YaesuController) !void {
_ = self;
log.err("this isn't implemented yet, sorry.", .{});
return error.NotImplemented;
}
fn runController(controller: *Controller) void {
controller.run() catch {
log.err(
@@ -125,16 +163,77 @@ fn runController(controller: *Controller) void {
};
}
const FeedbackBuffer = struct {
samples: []f64,
index: usize = 0,
fn initZero(allocator: std.mem.Allocator, samples: usize) !FeedbackBuffer {
const buf = try allocator.alloc(f64, samples * 2);
@memset(buf, 0);
return .{ .samples = buf };
}
fn deinit(self: FeedbackBuffer, allocator: std.mem.Allocator) void {
allocator.free(self.samples);
}
fn push(self: *FeedbackBuffer, sample: [2]lj.AnalogReadResult) void {
const halfpoint = @divExact(self.samples.len, 2);
defer self.index = (self.index + 1) % halfpoint;
self.samples[self.index] = sample[0].voltage;
self.samples[self.index + halfpoint] = sample[1].voltage;
}
inline fn mean(data: []f64) f64 {
var accum: f64 = 0;
for (data) |pt| {
accum += pt;
}
return accum / @as(f64, @floatFromInt(data.len));
}
fn lerp(input: f64, cal_points: Config.MinMax) f64 {
return (input - cal_points.minimum.voltage) * cal_points.slope() + cal_points.minimum.angle;
}
fn get(self: FeedbackBuffer) AzEl {
const halfpoint = @divExact(self.samples.len, 2);
return .{
.azimuth = lerp(
mean(self.samples[0..halfpoint]),
config.labjack.feedback_calibration.azimuth,
) + config.controller.angle_offset.azimuth,
.elevation = lerp(
mean(self.samples[halfpoint..]),
config.labjack.feedback_calibration.elevation,
) + config.controller.angle_offset.elevation,
};
}
fn getRaw(self: FeedbackBuffer) AzEl {
const halfpoint = @divExact(self.samples.len, 2);
return .{
.azimuth = mean(self.samples[0..halfpoint]),
.elevation = mean(self.samples[halfpoint..]),
};
}
};
const Controller = struct {
target: AzEl,
position: AzEl,
feedback_buffer: FeedbackBuffer,
current_state: ControllerState,
requested_state: ControllerState,
lock: *std.Thread.Mutex,
labjack: lj.Labjack,
lock: std.Thread.Mutex = .{},
condition: std.Thread.Condition = .{},
const ControllerState = enum {
initializing,
idle,
@@ -143,13 +242,13 @@ const Controller = struct {
stopped,
};
fn init(self: *Controller, lock: *std.Thread.Mutex) void {
self.* = .{
fn init(allocator: std.mem.Allocator) !Controller {
return .{
.target = .{ .azimuth = 0, .elevation = 0 },
.position = .{ .azimuth = 0, .elevation = 0 },
.feedback_buffer = try FeedbackBuffer.initZero(allocator, config.controller.feedback_window_samples),
.current_state = .stopped,
.requested_state = .idle,
.lock = lock,
.labjack = switch (config.labjack.device) {
.autodetect => lj.Labjack.autodetect(),
.serial_number => |sn| lj.Labjack.with_serial_number(sn),
@@ -157,12 +256,28 @@ const Controller = struct {
};
}
fn deinit(self: Controller, allocator: std.mem.Allocator) void {
self.feedback_buffer.deinit(allocator);
}
fn connectLabjack(self: *Controller) !void {
const info = try self.labjack.connect();
try self.labjack.setAllDigitalOutputLow();
self.labjack.id = info.local_id;
}
// this function is run with the lock already acquired
fn propagateState(self: *Controller) void {
if (self.current_state == .stopped) return;
self.current_state = self.requested_state;
}
// this function is run with the lock already acquired
fn requestState(self: *Controller, request: ControllerState) void {
if (self.current_state == .stopped) return;
self.requested_state = request;
}
fn lerpOne(input: f64, cal_points: Config.MinMax) f64 {
return (input - cal_points.minimum.voltage) * cal_points.slope() + cal_points.minimum.angle;
}
@@ -180,7 +295,21 @@ const Controller = struct {
};
}
fn signDeadzone(offset: f64, deadzone: f64) enum { negative, zero, positive } {
const Sign = enum {
negative,
zero,
positive,
pub fn symbol(self: Sign) u21 {
return switch (self) {
.negative => '-',
.zero => '×',
.positive => '+',
};
}
};
fn signDeadzone(offset: f64, deadzone: f64) Sign {
return if (@abs(offset) < deadzone)
.zero
else if (offset < 0)
@@ -189,26 +318,23 @@ const Controller = struct {
.positive;
}
fn updateAzEl(self: *const Controller) !AzEl {
const inputs = .{ config.controller.azimuth_input, config.controller.elevation_input };
fn updateFeedback(self: *Controller) !void {
const inputs = .{
config.controller.azimuth_input,
config.controller.elevation_input,
};
const raw = try self.labjack.readAnalogWriteDigital(
2,
inputs,
.{false} ** 4,
null,
true,
);
return lerpAndOffsetAngles(raw);
self.feedback_buffer.push(raw);
}
fn drive(self: *const Controller, pos_error: AzEl) !AzEl {
// NOTE: feedback will be roughly config.controller.loop_interval_ns out of
// date. For high loop rates, this shouldn't be an issue.
const inputs = .{ config.controller.azimuth_input, config.controller.elevation_input };
var drive_signal: [4]bool = .{false} ** 4;
fn drive(self: *const Controller, pos_error: AzEl) !void {
const azsign = signDeadzone(
pos_error.azimuth,
config.controller.angle_tolerance.azimuth,
@@ -219,95 +345,111 @@ const Controller = struct {
config.controller.angle_tolerance.elevation,
);
var drive_signal: [4]bool = .{false} ** 4;
drive_signal[config.controller.azimuth_outputs.increase.io] = azsign == .positive;
drive_signal[config.controller.azimuth_outputs.decrease.io] = azsign == .negative;
drive_signal[config.controller.elevation_outputs.increase.io] = elsign == .positive;
drive_signal[config.controller.elevation_outputs.decrease.io] = elsign == .negative;
log.info("drive: az = {s}, el = {s}. outputs: {any}", .{ @tagName(azsign), @tagName(elsign), drive_signal });
const raw = self.feedback_buffer.getRaw();
const raw = try self.labjack.readAnalogWriteDigital(2, inputs, drive_signal, true);
log.info(
// -180.1 is 6 chars. -5.20 is 5 chars
"az: {d: >6.1}° ({d: >5.2} V) Δ {d: >6.1}° => {u}, el: {d: >6.1}° ({d: >5.2} V) Δ {d: >6.1}° => {u}",
.{
self.position.azimuth,
raw.azimuth,
pos_error.azimuth,
azsign.symbol(),
self.position.elevation,
raw.elevation,
pos_error.elevation,
elsign.symbol(),
},
);
return lerpAndOffsetAngles(raw);
try self.labjack.writeIoLines(drive_signal);
}
fn setPosition(self: *Controller, position: AzEl) void {
self.position = position;
self.condition.broadcast();
}
fn run(self: *Controller) !void {
self.current_state = .initializing;
var timer: LoopTimer = .{ .interval_ns = config.controller.loop_interval_ns };
var timer = LoopTimer.init(config.controller.loop_interval_ns);
while (timer.mark()) : (timer.sleep()) switch (self.current_state) {
.initializing, .idle => {
const pos = self.updateAzEl() catch {
self.lock.lock();
defer self.lock.unlock();
self.current_state = .stopped;
continue;
};
while (timer.mark()) : (timer.sleep()) {
const fbfail = if (self.updateFeedback()) |_| false else |_| true;
{
self.lock.lock();
defer self.lock.unlock();
self.position = pos;
self.current_state = self.requested_state;
},
.calibration => {
self.lock.lock();
defer self.lock.unlock();
self.setPosition(self.feedback_buffer.get());
if (fbfail) self.requestState(.stopped);
self.propagateState();
}
// run calibration routine. psych, this does nothing. gottem
self.current_state = .idle;
self.requested_state = self.current_state;
},
.running => {
const pos_error: AzEl = blk: {
switch (self.current_state) {
.initializing, .idle => {},
.calibration => {
self.lock.lock();
defer self.lock.unlock();
break :blk .{
.azimuth = self.target.azimuth - self.position.azimuth,
.elevation = self.target.elevation - self.position.elevation,
// run calibration routine. psych, this does nothing. gottem
self.current_state = .idle;
self.requestState(.idle);
},
.running => {
const pos_error: AzEl = blk: {
self.lock.lock();
defer self.lock.unlock();
break :blk .{
.azimuth = self.target.azimuth - self.position.azimuth,
.elevation = self.target.elevation - self.position.elevation,
};
};
};
const pos = self.drive(pos_error) catch {
self.lock.lock();
defer self.lock.unlock();
self.drive(pos_error) catch {
self.lock.lock();
defer self.lock.unlock();
self.current_state = .stopped;
continue;
};
self.lock.lock();
defer self.lock.unlock();
self.position = pos;
self.current_state = self.requested_state;
},
.stopped => {
// attempt to reset the drive outputs
_ = self.updateAzEl() catch {};
break;
},
};
self.current_state = .stopped;
continue;
};
},
.stopped => {
// attempt to reset the drive outputs
try self.labjack.writeIoLines(.{false} ** 4);
break;
},
}
}
}
};
pub const LoopTimer = struct {
interval_ns: u64,
timer: std.time.Timer,
start: i128 = 0,
pub fn init(interval_ns: u64) LoopTimer {
return .{
.interval_ns = interval_ns,
.timer = std.time.Timer.start() catch @panic("Could not create timer"),
};
}
pub fn mark(self: *LoopTimer) bool {
self.start = std.time.nanoTimestamp();
self.timer.reset();
return true;
}
pub fn sleep(self: *LoopTimer) void {
const now = std.time.nanoTimestamp();
const elapsed: u64 = @intCast(now - self.start);
std.time.sleep(self.interval_ns - elapsed);
const elapsed = self.timer.read();
std.time.sleep(self.interval_ns -| elapsed);
}
};

View File

@@ -68,6 +68,30 @@ pub const Labjack = struct {
return status.toError();
}
pub fn writeIoLines(self: Labjack, out: [4]bool) LabjackError!void {
var id = self.cId();
var d_modes: c_long = 0xFF_FF;
var d_outputs: c_long = 0;
var d_states: c_long = 0;
const io_modes: c_long = 0b1111;
var io_outputs: c_long = PackedOutput.fromBoolArray(out).toCLong();
const status = c_api.DigitalIO(
&id,
self.demo(),
&d_modes,
io_modes,
&d_outputs,
&io_outputs,
1, // actually update the pin modes
&d_states,
);
if (!status.okay())
return status.toError();
}
/// Read one analog input channel, either single-ended or differential
pub fn analogReadOne(self: Labjack, input: AnalogInput) LabjackError!AnalogReadResult {
if (!input.channel.isDifferential() and input.gain_index != 0) {

View File

@@ -1,18 +1,81 @@
const std = @import("std");
const builtin = @import("builtin");
const Config = @import("./Config.zig");
const lj = @import("./labjack.zig");
const RotCtl = @import("./RotCtl.zig");
const YaesuController = @import("./YaesuController.zig");
const udev = @import("udev_rules");
const log = std.log.scoped(.main);
fn quit() noreturn {
if (YaesuController.singleton) |controller| {
controller.quit();
controller.control_thread.join();
}
std.process.exit(1);
}
const moreposix = struct {
pub extern "c" fn sigaddset(set: *std.posix.sigset_t, signo: c_int) c_int;
pub extern "c" fn sigdelset(set: *std.posix.sigset_t, signo: c_int) c_int;
pub extern "c" fn sigemptyset(set: *std.posix.sigset_t) c_int;
pub extern "c" fn sigfillset(set: *std.posix.sigset_t) c_int;
pub extern "c" fn sigismember(set: *const std.posix.sigset_t, signo: c_int) c_int;
// stdlib prototype is wrong, it doesn't take optional pointers.
pub extern "c" fn pthread_sigmask(how: c_int, noalias set: ?*const std.posix.sigset_t, noalias oldset: ?*std.posix.sigset_t) c_int;
};
const psigs = [_]c_int{ std.posix.SIG.INT, std.posix.SIG.HUP, std.posix.SIG.QUIT };
fn posixSignalHandlerThread() void {
var set: std.posix.sigset_t = undefined;
_ = moreposix.sigemptyset(&set);
for (psigs) |sig|
_ = moreposix.sigaddset(&set, sig);
var sig: c_int = 0;
_ = std.posix.system.sigwait(&set, &sig);
log.info("Got exit signal", .{});
quit();
}
// Windows runs this handler in a thread, so calling quit directly should be safe.
fn windowsEventHandler(code: std.os.windows.DWORD) callconv(std.os.windows.WINAPI) std.os.windows.BOOL {
_ = code;
log.info("Got exit signal", .{});
quit();
}
fn addExitHandler() !void {
if (comptime builtin.os.tag == .windows) {
try std.os.windows.SetConsoleCtrlHandler(windowsEventHandler, true);
} else if (comptime std.Thread.use_pthreads) {
var set: std.posix.sigset_t = undefined;
_ = moreposix.sigemptyset(&set);
for (psigs) |sig|
_ = moreposix.sigaddset(&set, sig);
_ = moreposix.pthread_sigmask(std.posix.SIG.BLOCK, &set, null);
// nobody cares about the thread
_ = try std.Thread.spawn(.{}, posixSignalHandlerThread, .{});
} else {
log.err("not windows and not pthreads = disaster", .{});
}
}
fn printStderr(comptime fmt: []const u8, args: anytype) void {
std.debug.print(fmt ++ "\n", args);
}
pub fn main() !u8 {
if (comptime builtin.os.tag == .windows) {
// set output to UTF-8 on Windows
_ = std.os.windows.kernel32.SetConsoleOutputCP(65001);
}
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer _ = gpa.deinit();
const allocator = gpa.allocator();
@@ -47,37 +110,52 @@ pub fn main() !u8 {
}
Config.loadDefault(allocator);
defer Config.deinit();
return writeDefaultConfig(if (args.len == 3) args[2] else null);
} else if (std.mem.eql(u8, args[1], commands.run)) {
if (args.len > 3) {
printHelp(exename, .run);
return 1;
}
blk: {
const confpath = if (args.len == 3) args[2] else "yaes.json";
const conf_file = std.fs.cwd().openFile(confpath, .{}) catch {
log.warn("Could not load config file '{s}'. Using default config.", .{confpath});
Config.loadDefault(allocator);
break :blk;
};
defer conf_file.close();
loadConfigOrDefault(allocator, if (args.len == 3) args[2] else null) catch
return 1;
Config.load(allocator, conf_file.reader(), std.io.getStdErr().writer()) catch |err| {
log.err("Could not parse config file '{s}': {s}.", .{ confpath, @errorName(err) });
return 1;
};
}
defer Config.destroy(allocator);
defer Config.deinit();
const ver = lj.getDriverVersion();
std.debug.print("Driver version: {d}\n", .{ver});
RotCtl.run(allocator) catch |err| {
log.err("rotator controller ceased unexpectedly! {s}", .{@errorName(err)});
addExitHandler() catch {
log.err("Could not install quit handler.", .{});
return 1;
};
return 0;
RotCtl.run(allocator) catch |err| {
log.err("rotator controller ceased unexpectedly! {s}", .{@errorName(err)});
quit();
};
} else if (std.mem.eql(u8, args[1], commands.calibrate)) {
if (args.len < 3 or args.len > 4) {
printHelp(exename, .calibrate);
return 1;
}
loadConfigOrDefault(allocator, if (args.len == 4) args[3] else null) catch
return 1;
defer Config.deinit();
const routine = std.meta.stringToEnum(YaesuController.CalibrationRoutine, args[2]) orelse {
log.err("{s} is not a known calibration routine.", .{args[2]});
printHelp(exename, .calibrate);
return 1;
};
addExitHandler() catch {
log.err("Could not install quit handler.", .{});
return 1;
};
YaesuController.calibrate(allocator, routine) catch |err| {
log.err("Calibration failed: {s}", .{@errorName(err)});
quit();
};
} else if (std.mem.eql(u8, args[1], commands.help)) {
if (args.len != 3) {
printHelp(exename, .help);
@@ -97,6 +175,24 @@ pub fn main() !u8 {
printHelp(exename, .main);
return 1;
}
return 0;
}
fn loadConfigOrDefault(allocator: std.mem.Allocator, path: ?[]const u8) !void {
const confpath = path orelse "yaes.json";
const conf_file = std.fs.cwd().openFile(confpath, .{}) catch {
log.warn("Could not load config file '{s}'. Using default config.", .{confpath});
Config.loadDefault(allocator);
return;
};
defer conf_file.close();
Config.load(allocator, conf_file.reader(), std.io.getStdErr().writer()) catch |err| {
log.err("Could not parse config file '{s}': {s}.", .{ confpath, @errorName(err) });
return error.InvalidConfig;
};
log.info("Loaded config from '{s}'.", .{confpath});
}
fn installUdevRules(outpath: ?[]const u8) u8 {
@@ -261,7 +357,7 @@ const command_help = .{
\\ Perform a calibration routine and write an updated configuration with its results.
\\
\\Arguments:
\\ routine Must be one of `feedback` or `orientation`. The different calibration routines have
\\ routine Must be either `feedback` or `orientation`. The different calibration routines have
\\ different requirements. `orientation` calibration is a sun-pointing-based routine and
\\ should be performed after `feedback` calibration is complete.
\\ config_file [Optional] the path of a config file to load. This file will be updated with the