value: implement parsing to objects

There are still some untested codepaths here, but this does seem to
work for nontrivial objects, so, woohoo. It's worth noting that this
is a recursive implementation (which seems silly after I hand-rolled
the non-recursive main parser). The thinking is that if you have a
deeply-enough nested object that you run out of stack space here, you
probably shouldn't be converting it directly to an object.

I may revisit this, though I am still not 100% certain how
straightforward it would be to make this nonrecursive with all the
weird comptime objects. Basically the "parse stack" would have to be
created at comptime.
This commit is contained in:
2023-10-03 23:17:37 -07:00
parent 0028092a4e
commit 34ec58e0d2
3 changed files with 321 additions and 22 deletions

View File

@@ -5,28 +5,9 @@ const Error = @import("../parser.zig").Error;
const DuplicateKeyBehavior = @import("../parser.zig").DuplicateKeyBehavior;
const Options = @import("../parser.zig").Options;
const Diagnostics = @import("../parser.zig").Diagnostics;
const Document = @import("./value.zig").Document;
const Value = @import("./value.zig").Value;
pub const Document = struct {
arena: std.heap.ArenaAllocator,
root: Value,
pub fn init(alloc: std.mem.Allocator) Document {
return .{
.arena = std.heap.ArenaAllocator.init(alloc),
.root = undefined,
};
}
pub fn printDebug(self: Document) void {
return self.root.printDebug();
}
pub fn deinit(self: Document) void {
self.arena.deinit();
}
};
const FlowParseState = enum {
want_list_item,
consuming_list_item,

View File

@@ -1,5 +1,45 @@
const std = @import("std");
const Options = @import("../parser.zig").Options;
pub const Document = struct {
arena: std.heap.ArenaAllocator,
root: Value,
pub fn init(alloc: std.mem.Allocator) Document {
return .{
.arena = std.heap.ArenaAllocator.init(alloc),
.root = undefined,
};
}
pub fn convertTo(self: *Document, comptime T: type, options: Options) !Parsed(T) {
return .{
.value = try self.root.convertTo(T, self.arena.allocator(), options),
.arena = self.arena,
};
}
pub fn printDebug(self: Document) void {
return self.root.printDebug();
}
pub fn deinit(self: Document) void {
self.arena.deinit();
}
};
pub fn Parsed(comptime T: type) type {
return struct {
value: T,
arena: std.heap.ArenaAllocator,
pub fn deinit(self: @This()) void {
self.arena.deinit();
}
};
}
pub const Value = union(enum) {
pub const String = std.ArrayList(u8);
pub const Map = std.StringArrayHashMap(Value);
@@ -13,6 +53,219 @@ pub const Value = union(enum) {
map: Map,
flow_map: Map,
pub fn convertTo(self: Value, comptime T: type, allocator: std.mem.Allocator, options: Options) !T {
switch (@typeInfo(T)) {
.Void => {
switch (self) {
.scalar => |str| return if (str.items.len == 0) void{} else error.BadValue,
.string => |str| return if (options.coerce_strings and str.items.len == 0) void{} else error.BadValue,
else => return error.BadValue,
}
},
.Bool => {
switch (self) {
inline .scalar, .string => |str, tag| {
if (tag == .string and !options.coerce_strings) return error.BadValue;
for (options.boolean_strings.truthy) |check|
if (std.mem.eql(u8, str.items, check)) return true;
for (options.boolean_strings.falsy) |check|
if (std.mem.eql(u8, str.items, check)) return false;
return error.BadValue;
},
else => return error.BadValue,
}
},
.Int, .ComptimeInt => {
switch (self) {
inline .scalar, .string => |str, tag| {
if (tag == .string and !options.coerce_strings) return error.BadValue;
std.debug.print("'{s}'\n", .{str.items});
return try std.fmt.parseInt(T, str.items, 0);
},
else => return error.BadValue,
}
},
.Float, .ComptimeFloat => {
switch (self) {
inline .scalar, .string => |str, tag| {
if (tag == .string and !options.coerce_strings) return error.BadValue;
return try std.fmt.parseFloat(T, str.items, 0);
},
else => return error.BadValue,
}
},
.Pointer => |ptr| switch (ptr.size) {
.Slice => {
// TODO: There is ambiguity here because a document expecting a list
// of u8 could parse a string instead. Introduce a special
// type to use for this? the problem is that it becomes
// invasive into downstream code. Ultimately this should
// probably be solved in the zig stdlib or similar.
// TODO: This also doesn't handle sentinels properly.
switch (self) {
.scalar, .string => |str| return if (ptr.child == u8) str.items else error.BadValue,
.list, .flow_list => |lst| {
var result = try std.ArrayList(ptr.child).initCapacity(allocator, lst.items.len);
errdefer result.deinit();
for (lst.items) |item| {
result.appendAssumeCapacity(try item.convertTo(ptr.child, allocator, options));
}
return result.toOwnedSlice();
},
else => return error.BadValue,
}
},
.One => {
const result = try allocator.create(ptr.child);
errdefer allocator.destroy(result);
result.* = try self.convertTo(ptr.child, allocator, options);
return result;
},
else => @compileError("Cannot deserialize into many-pointer or c-pointer " ++ @typeName(T)), // do not support many or C item pointers.
},
.Array => |arr| {
// TODO: There is ambiguity here because a document expecting a list
// of u8 could parse a string instead. Introduce a special
// type to use for this? the problem is that it becomes
// invasive into downstream code. Ultimately this should
// probably be solved in the zig stdlib or similar.
// TODO: This also doesn't handle sentinels properly.
switch (self) {
.scalar, .string => |str| {
if (arr.child == u8 and str.items.len == arr.len) {
var result: T = undefined;
@memcpy(&result, str.items);
return result;
} else return error.BadValue;
},
.list, .flow_list => |lst| {
var storage = try std.ArrayList(arr.child).initCapacity(allocator, arr.len);
defer storage.deinit();
for (lst.items) |item| {
storage.appendAssumeCapacity(try item.convertTo(arr.child, allocator, options));
}
// this may result in a big stack allocation, which is not ideal
var result: T = undefined;
@memcpy(&result, storage.items);
return result;
},
else => return error.BadValue,
}
},
.Struct => |stt| {
if (comptime std.meta.trait.hasFn("deserializeNice")(T))
return T.deserializeNice(self, allocator, options);
if (stt.is_tuple) {
switch (self) {
.list, .flow_list => |list| {
if (list.items.len != stt.fields.len) return error.BadValue;
var result: T = undefined;
inline for (stt.fields, 0..) |field, idx| {
result[idx] = try list.items[idx].convertTo(field.type, allocator, options);
}
return result;
},
else => return error.BadValue,
}
}
switch (self) {
.map, .flow_map => |map| {
var result: T = undefined;
if (options.ignore_extra_fields) {
inline for (stt.fields) |field| {
if (map.get(field.name)) |value| {
@field(result, field.name) = try value.convertTo(field.type, allocator, options);
} else if (options.treat_omitted_as_null and @typeInfo(field.type) == .Optional) {
@field(result, field.name) = null;
} else {
std.debug.print("{s}\n", .{field.name});
return error.BadValue;
}
}
} else {
// we could iterate over each map key and do an exhaustive
// comparison with each struct field name. This would save
// memory and it would probably be a fair amount faster for
// small structs.
var clone = try map.clone();
defer clone.deinit();
inline for (stt.fields) |field| {
if (clone.fetchSwapRemove(field.name)) |kv| {
@field(result, field.name) = try kv.value.convertTo(field.type, allocator, options);
} else if (options.treat_omitted_as_null and @typeInfo(field.type) == .Optional) {
@field(result, field.name) = null;
} else return error.BadValue;
}
// there were extra fields in the data
if (clone.count() > 0) return error.BadValue;
}
return result;
},
else => return error.BadValue,
}
},
.Enum => {
if (comptime std.meta.trait.hasFn("deserializeNice")(T))
return T.deserializeNice(self, allocator, options);
switch (self) {
inline .scalar, .string => |str, tag| {
if (tag == .string and !options.coerce_strings) return error.BadValue;
if (std.meta.stringToEnum(T, str.items)) |value| return value;
if (options.allow_numeric_enums) {
const parsed = std.fmt.parseInt(@typeInfo(T).Enum.tag_type, str.items, 10) catch
return error.BadValue;
return std.meta.intToEnum(T, parsed) catch error.BadValue;
}
return error.BadValue;
},
else => return error.BadValue,
}
},
.Union => |unn| {
if (comptime std.meta.trait.hasFn("deserializeNice")(T))
return T.deserializeNice(self, allocator, options);
if (unn.tag_type == null) @compileError("Cannot deserialize into untagged union " ++ @typeName(T));
switch (self) {
.map, .flow_map => |map| {
// a union may not ever be deserialized from a map with more than one value
if (map.count() != 1) return error.BadValue;
const key = map.keys()[0];
inline for (unn.fields) |field| {
if (std.mem.eql(u8, key, field.name))
return @unionInit(T, field.name, try map.get(key).?.convertTo(field.type, allocator, options));
}
return error.BadValue;
},
// TODO: if the field is a 0 width type like void, we could parse it
// directly from a scalar/string value (i.e. a name with no
// corresponding value)
else => return error.BadValue,
}
},
.Optional => |opt| {
switch (self) {
inline .scalar, .string => |str, tag| {
if (tag == .string and !options.coerce_strings) return error.BadValue;
for (options.null_strings) |check|
if (std.mem.eql(u8, str.items, check)) return null;
return try self.convertTo(opt.child, allocator, options);
},
else => return error.BadValue,
}
},
else => @compileError("Cannot deserialize into unsupported type " ++ @typeName(T)),
}
}
pub inline fn fromScalar(alloc: std.mem.Allocator, input: []const u8) !Value {
return try _fromScalarOrString(alloc, .scalar, input);
}