// Copyright 2019 The NATS Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "crypto.h" #ifdef NATS_USE_LIBSODIUM #include natsStatus natsCrypto_Init() { return ((sodium_init() == -1) ? NATS_ERR : NATS_OK); } natsStatus natsCrypto_Sign(const unsigned char *seed, const unsigned char *input, int inputLen, unsigned char signature[NATS_CRYPTO_SIGN_BYTES]) { unsigned char pk[crypto_sign_PUBLICKEYBYTES]; unsigned char sk[crypto_sign_SECRETKEYBYTES]; crypto_sign_seed_keypair(pk, sk, seed); crypto_sign_detached(signature, NULL, input, inputLen, sk); sodium_memzero(sk, crypto_sign_SECRETKEYBYTES); return NATS_OK; } void natsCrypto_Clear(void *mem, int memLen) { sodium_memzero(mem, (size_t) memLen); } #else #include #include "mem.h" #include "err.h" // Taken from https://tweetnacl.cr.yp.to/index.html // and simplified since we only need crypto_sign(). // Also fixed some warnings due to different integer sizes. #define FOR(i,n) for (i=0;i= 0;--i) { x[i] = (u8)u; u >>= 8; } } static void set25519(gf r, const gf a) { int i; FOR(i,16) r[i]=a[i]; } static void car25519(gf o) { int i; i64 c; FOR(i,16) { o[i]+=(1LL<<16); c=o[i]>>16; o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15); o[i]-=c<<16; } } static void sel25519(gf p,gf q,int b) { i64 t,i,c=~(b-1); FOR(i,16) { t= c&(p[i]^q[i]); p[i]^=t; q[i]^=t; } } static void pack25519(u8 *o,const gf n) { int i,j,b; gf m,t; FOR(i,16) t[i]=n[i]; car25519(t); car25519(t); car25519(t); FOR(j,2) { m[0]=t[0]-0xffed; for(i=1;i<15;i++) { m[i]=t[i]-0xffff-((m[i-1]>>16)&1); m[i-1]&=0xffff; } m[15]=t[15]-0x7fff-((m[14]>>16)&1); b=(m[15]>>16)&1; m[14]&=0xffff; sel25519(t,m,1-b); } FOR(i,16) { o[2*i]=t[i]&0xff; o[2*i+1]=(u8)(t[i]>>8); } } static u8 par25519(const gf a) { u8 d[32]; pack25519(d,a); return d[0]&1; } static void A(gf o,const gf a,const gf b) { int i; FOR(i,16) o[i]=a[i]+b[i]; } static void Z(gf o,const gf a,const gf b) { int i; FOR(i,16) o[i]=a[i]-b[i]; } static void M(gf o,const gf a,const gf b) { i64 i,j,t[31]; FOR(i,31) t[i]=0; FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j]; FOR(i,15) t[i]+=38*t[i+16]; FOR(i,16) o[i]=t[i]; car25519(o); car25519(o); } static void S(gf o,const gf a) { M(o,a,a); } static void inv25519(gf o,const gf i) { gf c; int a; FOR(a,16) c[a]=i[a]; for(a=253;a>=0;a--) { S(c,c); if(a!=2&&a!=4) M(c,c,i); } FOR(a,16) o[a]=c[a]; } static u64 R(u64 x,int c) { return (x >> c) | (x << (64 - c)); } static u64 Ch(u64 x,u64 y,u64 z) { return (x & y) ^ (~x & z); } static u64 Maj(u64 x,u64 y,u64 z) { return (x & y) ^ (x & z) ^ (y & z); } static u64 Sigma0(u64 x) { return R(x,28) ^ R(x,34) ^ R(x,39); } static u64 Sigma1(u64 x) { return R(x,14) ^ R(x,18) ^ R(x,41); } static u64 sigma0(u64 x) { return R(x, 1) ^ R(x, 8) ^ (x >> 7); } static u64 sigma1(u64 x) { return R(x,19) ^ R(x,61) ^ (x >> 6); } static const u64 K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; static void crypto_hashblocks(u8 *x,const u8 *m,u64 n) { u64 z[8],b[8],a[8],w[16],t; int i,j; FOR(i,8) z[i] = a[i] = dl64(x + 8 * i); while (n >= 128) { FOR(i,16) w[i] = dl64(m + 8 * i); FOR(i,80) { FOR(j,8) b[j] = a[j]; t = a[7] + Sigma1(a[4]) + Ch(a[4],a[5],a[6]) + K[i] + w[i%16]; b[7] = t + Sigma0(a[0]) + Maj(a[0],a[1],a[2]); b[3] += t; FOR(j,8) a[(j+1)%8] = b[j]; if (i%16 == 15) FOR(j,16) w[j] += w[(j+9)%16] + sigma0(w[(j+1)%16]) + sigma1(w[(j+14)%16]); } FOR(i,8) { a[i] += z[i]; z[i] = a[i]; } m += 128; n -= 128; } FOR(i,8) ts64(x+8*i,z[i]); } static const u8 iv[64] = { 0x6a,0x09,0xe6,0x67,0xf3,0xbc,0xc9,0x08, 0xbb,0x67,0xae,0x85,0x84,0xca,0xa7,0x3b, 0x3c,0x6e,0xf3,0x72,0xfe,0x94,0xf8,0x2b, 0xa5,0x4f,0xf5,0x3a,0x5f,0x1d,0x36,0xf1, 0x51,0x0e,0x52,0x7f,0xad,0xe6,0x82,0xd1, 0x9b,0x05,0x68,0x8c,0x2b,0x3e,0x6c,0x1f, 0x1f,0x83,0xd9,0xab,0xfb,0x41,0xbd,0x6b, 0x5b,0xe0,0xcd,0x19,0x13,0x7e,0x21,0x79 } ; static int crypto_hash(u8 *out,const u8 *m,u64 n) { u8 h[64],x[256]; u64 i,b = n; FOR(i,64) h[i] = iv[i]; crypto_hashblocks(h,m,n); m += n; n &= 127; m -= n; FOR(i,256) x[i] = 0; FOR(i,n) x[i] = m[i]; x[n] = 128; n = 256-128*(n<112); x[n-9] = b >> 61; ts64(x+n-8,b<<3); crypto_hashblocks(h,x,n); FOR(i,64) out[i] = h[i]; return 0; } static void add(gf p[4],gf q[4]) { gf a,b,c,d,t,e,f,g,h; Z(a, p[1], p[0]); Z(t, q[1], q[0]); M(a, a, t); A(b, p[0], p[1]); A(t, q[0], q[1]); M(b, b, t); M(c, p[3], q[3]); M(c, c, D2); M(d, p[2], q[2]); A(d, d, d); Z(e, b, a); Z(f, d, c); A(g, d, c); A(h, b, a); M(p[0], e, f); M(p[1], h, g); M(p[2], g, f); M(p[3], e, h); } static void cswap(gf p[4],gf q[4],u8 b) { int i; FOR(i,4) sel25519(p[i],q[i],b); } static void pack(u8 *r,gf p[4]) { gf tx, ty, zi; inv25519(zi, p[2]); M(tx, p[0], zi); M(ty, p[1], zi); pack25519(r, ty); r[31] ^= par25519(tx) << 7; } static void scalarmult(gf p[4],gf q[4],const u8 *s) { int i; set25519(p[0],gf0); set25519(p[1],gf1); set25519(p[2],gf1); set25519(p[3],gf0); for (i = 255;i >= 0;--i) { u8 b = (s[i/8]>>(i&7))&1; cswap(p,q,b); add(q,p); add(p,p); cswap(p,q,b); } } static void scalarbase(gf p[4],const u8 *s) { gf q[4]; set25519(q[0],X); set25519(q[1],Y); set25519(q[2],gf1); M(q[3],X,Y); scalarmult(p,q,s); } static const u64 L[32] = {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x10}; static void modL(u8 *r,i64 x[64]) { i64 carry,i,j; for (i = 63;i >= 32;--i) { carry = 0; for (j = i - 32;j < i - 12;++j) { x[j] += carry - 16 * x[i] * L[j - (i - 32)]; carry = (x[j] + 128) >> 8; x[j] -= carry << 8; } x[j] += carry; x[i] = 0; } carry = 0; FOR(j,32) { x[j] += carry - (x[31] >> 4) * L[j]; carry = x[j] >> 8; x[j] &= 255; } FOR(j,32) x[j] -= carry * L[j]; FOR(i,32) { x[i+1] += x[i] >> 8; r[i] = x[i] & 255; } } static void reduce(u8 *r) { i64 x[64],i; FOR(i,64) x[i] = (u64) r[i]; FOR(i,64) r[i] = 0; modL(r,x); } static void newKeyFromSeed(const unsigned char *seed, unsigned char *sk) { u8 d[64]; gf p[4]; u64 i; u8 pk[32]; crypto_hash(d, seed, 32); d[0] &= 248; d[31] &= 127; d[31] |= 64; scalarbase(p,d); pack(pk,p); FOR(i,32) sk[i] = seed[i]; FOR(i,32) sk[32 + i] = pk[i]; } static void cryptoSign(unsigned char *sm, const unsigned char *m, int mlen, const unsigned char *sk) { u8 d[64],h[64],r[64]; i64 j,x[64]; u64 i; gf p[4]; u64 n = (u64) mlen; crypto_hash(d, sk, 32); d[0] &= 248; d[31] &= 127; d[31] |= 64; FOR(i,n) sm[64 + i] = m[i]; FOR(i,32) sm[32 + i] = d[32 + i]; crypto_hash(r, sm+32, n+32); reduce(r); scalarbase(p,r); pack(sm,p); FOR(i,32) sm[i+32] = sk[i+32]; crypto_hash(h,sm,n + 64); reduce(h); FOR(i,64) x[i] = 0; FOR(i,32) x[i] = (u64) r[i]; FOR(i,32) FOR(j,32) x[i+j] += h[i] * (u64) d[j]; modL(sm + 32,x); } // secure_memzero() tries to effectively set to zero a given number // of bytes, even if optimizations are applied to the code. // Code derived from sodium_memzero() static void secure_memzero(void * const pnt, const size_t len) { #ifdef _WIN32 SecureZeroMemory(pnt, len); #elif defined(HAVE_EXPLICIT_BZERO) explicit_bzero(pnt, len); #elif defined(HAVE_EXPLICIT_MEMSET) explicit_memset(pnt, 0, len); #else volatile unsigned char *volatile p = (volatile unsigned char *volatile) pnt; size_t i; for (i = 0; i < len; i++) { p[i] = 0; } #endif } natsStatus natsCrypto_Init() { return NATS_OK; } natsStatus natsCrypto_Sign(const unsigned char *seed, const unsigned char *input, int inputLen, unsigned char signature[NATS_CRYPTO_SIGN_BYTES]) { char *sm = NULL; unsigned char sk[NATS_CRYPTO_SECRET_BYTES]; sm = NATS_MALLOC(inputLen + NATS_CRYPTO_SIGN_BYTES); if (sm == NULL) return nats_setDefaultError(NATS_NO_MEMORY); newKeyFromSeed(seed, sk); cryptoSign((unsigned char*) sm, input, inputLen, sk); memcpy(signature, sm, NATS_CRYPTO_SIGN_BYTES); secure_memzero((void*) sm, NATS_CRYPTO_SIGN_BYTES); secure_memzero((void*) sk, sizeof(sk)); NATS_FREE(sm); return NATS_OK; } void natsCrypto_Clear(void *mem, int memLen) { secure_memzero(mem, (size_t) memLen); } #endif