2023-09-03 18:24:16 -07:00

569 lines
14 KiB
C

/* $OpenBSD: bn_internal.h,v 1.15 2023/06/25 11:42:26 jsing Exp $ */
/*
* Copyright (c) 2023 Joel Sing <jsing@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <openssl/bn.h>
#include "bn_arch.h"
#ifndef HEADER_BN_INTERNAL_H
#define HEADER_BN_INTERNAL_H
int bn_word_clz(BN_ULONG w);
int bn_bitsize(const BIGNUM *bn);
#ifndef HAVE_BN_CT_NE_ZERO
static inline int
bn_ct_ne_zero(BN_ULONG w)
{
return (w | ~(w - 1)) >> (BN_BITS2 - 1);
}
#endif
#ifndef HAVE_BN_CT_NE_ZERO_MASK
static inline BN_ULONG
bn_ct_ne_zero_mask(BN_ULONG w)
{
return 0 - bn_ct_ne_zero(w);
}
#endif
#ifndef HAVE_BN_CT_EQ_ZERO
static inline int
bn_ct_eq_zero(BN_ULONG w)
{
return 1 - bn_ct_ne_zero(w);
}
#endif
#ifndef HAVE_BN_CT_EQ_ZERO_MASK
static inline BN_ULONG
bn_ct_eq_zero_mask(BN_ULONG w)
{
return 0 - bn_ct_eq_zero(w);
}
#endif
#ifndef HAVE_BN_CLZW
static inline int
bn_clzw(BN_ULONG w)
{
return bn_word_clz(w);
}
#endif
/*
* Big number primitives are named as the operation followed by a suffix
* that indicates the number of words that it operates on, where 'w' means
* single word, 'dw' means double word, 'tw' means triple word and 'qw' means
* quadruple word. Unless otherwise noted, the size of the output is implied
* based on its inputs, for example bn_mulw() takes two single word inputs
* and is going to produce a double word result.
*
* Where a function implements multiple operations, these are listed in order.
* For example, a function that computes (r1:r0) = a * b + c is named
* bn_mulw_addw(), producing a double word result.
*/
/*
* Default implementations for BN_ULLONG architectures.
*
* On these platforms the C compiler is generally better at optimising without
* the use of inline assembly primitives. However, it can be difficult for the
* compiler to see through primitives in order to combine operations, due to
* type changes/narrowing. For this reason compound primitives are usually
* explicitly provided.
*/
#ifdef BN_ULLONG
#ifndef HAVE_BN_ADDW
#define HAVE_BN_ADDW
static inline void
bn_addw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULLONG r;
r = (BN_ULLONG)a + (BN_ULLONG)b;
*out_r1 = r >> BN_BITS2;
*out_r0 = r & BN_MASK2;
}
#endif
#ifndef HAVE_BN_ADDW_ADDW
#define HAVE_BN_ADDW_ADDW
static inline void
bn_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1,
BN_ULONG *out_r0)
{
BN_ULLONG r;
r = (BN_ULLONG)a + (BN_ULLONG)b + (BN_ULLONG)c;
*out_r1 = r >> BN_BITS2;
*out_r0 = r & BN_MASK2;
}
#endif
#ifndef HAVE_BN_MULW
#define HAVE_BN_MULW
static inline void
bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULLONG r;
r = (BN_ULLONG)a * (BN_ULLONG)b;
*out_r1 = r >> BN_BITS2;
*out_r0 = r & BN_MASK2;
}
#endif
#ifndef HAVE_BN_MULW_ADDW
#define HAVE_BN_MULW_ADDW
static inline void
bn_mulw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1,
BN_ULONG *out_r0)
{
BN_ULLONG r;
r = (BN_ULLONG)a * (BN_ULLONG)b + (BN_ULLONG)c;
*out_r1 = r >> BN_BITS2;
*out_r0 = r & BN_MASK2;
}
#endif
#ifndef HAVE_BN_MULW_ADDW_ADDW
#define HAVE_BN_MULW_ADDW_ADDW
static inline void
bn_mulw_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG d,
BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULLONG r;
r = (BN_ULLONG)a * (BN_ULLONG)b + (BN_ULLONG)c + (BN_ULLONG)d;
*out_r1 = r >> BN_BITS2;
*out_r0 = r & BN_MASK2;
}
#endif
#endif /* !BN_ULLONG */
/*
* bn_addw() computes (r1:r0) = a + b, where both inputs are single words,
* producing a double word result. The value of r1 is the carry from the
* addition.
*/
#ifndef HAVE_BN_ADDW
static inline void
bn_addw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG r1, r0, c1, c2;
c1 = a | b;
c2 = a & b;
r0 = a + b;
r1 = ((c1 & ~r0) | c2) >> (BN_BITS2 - 1); /* carry */
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_addw_addw() computes (r1:r0) = a + b + c, where all inputs are single
* words, producing a double word result.
*/
#ifndef HAVE_BN_ADDW_ADDW
static inline void
bn_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1,
BN_ULONG *out_r0)
{
BN_ULONG carry, r1, r0;
bn_addw(a, b, &r1, &r0);
bn_addw(r0, c, &carry, &r0);
r1 += carry;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_qwaddqw() computes
* (r4:r3:r2:r1:r0) = (a3:a2:a1:a0) + (b3:b2:b1:b0) + carry, where a is a quad word,
* b is a quad word, and carry is a single word with value 0 or 1, producing a four
* word result and carry.
*/
#ifndef HAVE_BN_QWADDQW
static inline void
bn_qwaddqw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b3,
BN_ULONG b2, BN_ULONG b1, BN_ULONG b0, BN_ULONG carry, BN_ULONG *out_carry,
BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG r3, r2, r1, r0;
bn_addw_addw(a0, b0, carry, &carry, &r0);
bn_addw_addw(a1, b1, carry, &carry, &r1);
bn_addw_addw(a2, b2, carry, &carry, &r2);
bn_addw_addw(a3, b3, carry, &carry, &r3);
*out_carry = carry;
*out_r3 = r3;
*out_r2 = r2;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_subw() computes r0 = a - b, where both inputs are single words,
* producing a single word result and borrow.
*/
#ifndef HAVE_BN_SUBW
static inline void
bn_subw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_borrow, BN_ULONG *out_r0)
{
BN_ULONG borrow, r0;
r0 = a - b;
borrow = ((r0 | (b & ~a)) & (b | ~a)) >> (BN_BITS2 - 1);
*out_borrow = borrow;
*out_r0 = r0;
}
#endif
/*
* bn_subw_subw() computes r0 = a - b - c, where all inputs are single words,
* producing a single word result and borrow.
*/
#ifndef HAVE_BN_SUBW_SUBW
static inline void
bn_subw_subw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_borrow,
BN_ULONG *out_r0)
{
BN_ULONG b1, b2, r0;
bn_subw(a, b, &b1, &r0);
bn_subw(r0, c, &b2, &r0);
*out_borrow = b1 + b2;
*out_r0 = r0;
}
#endif
/*
* bn_qwsubqw() computes
* (r3:r2:r1:r0) = (a3:a2:a1:a0) - (b3:b2:b1:b0) - borrow, where a is a quad word,
* b is a quad word, and borrow is a single word with value 0 or 1, producing a
* four word result and borrow.
*/
#ifndef HAVE_BN_QWSUBQW
static inline void
bn_qwsubqw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b3,
BN_ULONG b2, BN_ULONG b1, BN_ULONG b0, BN_ULONG borrow, BN_ULONG *out_borrow,
BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG r3, r2, r1, r0;
bn_subw_subw(a0, b0, borrow, &borrow, &r0);
bn_subw_subw(a1, b1, borrow, &borrow, &r1);
bn_subw_subw(a2, b2, borrow, &borrow, &r2);
bn_subw_subw(a3, b3, borrow, &borrow, &r3);
*out_borrow = borrow;
*out_r3 = r3;
*out_r2 = r2;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_mulw() computes (r1:r0) = a * b, where both inputs are single words,
* producing a double word result.
*/
#ifndef HAVE_BN_MULW
/*
* Multiply two words (a * b) producing a double word result (h:l).
*
* This can be rewritten as:
*
* a * b = (hi32(a) * 2^32 + lo32(a)) * (hi32(b) * 2^32 + lo32(b))
* = hi32(a) * hi32(b) * 2^64 +
* hi32(a) * lo32(b) * 2^32 +
* hi32(b) * lo32(a) * 2^32 +
* lo32(a) * lo32(b)
*
* The multiplication for each part of a and b can be calculated for each of
* these four terms without overflowing a BN_ULONG, as the maximum value of a
* 32 bit x 32 bit multiplication is 32 + 32 = 64 bits. Once these
* multiplications have been performed the result can be partitioned and summed
* into a double word (h:l). The same applies on a 32 bit system, substituting
* 16 for 32 and 32 for 64.
*/
#if 1
static inline void
bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG a1, a0, b1, b0, r1, r0;
BN_ULONG carry, x;
a1 = a >> BN_BITS4;
a0 = a & BN_MASK2l;
b1 = b >> BN_BITS4;
b0 = b & BN_MASK2l;
r1 = a1 * b1;
r0 = a0 * b0;
/* (a1 * b0) << BN_BITS4, partition the result across r1:r0 with carry. */
x = a1 * b0;
r1 += x >> BN_BITS4;
bn_addw(r0, x << BN_BITS4, &carry, &r0);
r1 += carry;
/* (b1 * a0) << BN_BITS4, partition the result across r1:r0 with carry. */
x = b1 * a0;
r1 += x >> BN_BITS4;
bn_addw(r0, x << BN_BITS4, &carry, &r0);
r1 += carry;
*out_r1 = r1;
*out_r0 = r0;
}
#else
/*
* XXX - this accumulator based version uses fewer instructions, however
* requires more variables/registers. It seems to be slower on at least amd64
* and i386, however may be faster on other architectures that have more
* registers available. Further testing is required and one of the two
* implementations should eventually be removed.
*/
static inline void
bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG a1, a0, b1, b0, r1, r0, x;
BN_ULONG acc0, acc1, acc2, acc3;
a1 = a >> BN_BITS4;
b1 = b >> BN_BITS4;
a0 = a & BN_MASK2l;
b0 = b & BN_MASK2l;
r1 = a1 * b1;
r0 = a0 * b0;
acc0 = r0 & BN_MASK2l;
acc1 = r0 >> BN_BITS4;
acc2 = r1 & BN_MASK2l;
acc3 = r1 >> BN_BITS4;
/* (a1 * b0) << BN_BITS4, partition the result across r1:r0. */
x = a1 * b0;
acc1 += x & BN_MASK2l;
acc2 += (acc1 >> BN_BITS4) + (x >> BN_BITS4);
acc1 &= BN_MASK2l;
acc3 += acc2 >> BN_BITS4;
acc2 &= BN_MASK2l;
/* (b1 * a0) << BN_BITS4, partition the result across r1:r0. */
x = b1 * a0;
acc1 += x & BN_MASK2l;
acc2 += (acc1 >> BN_BITS4) + (x >> BN_BITS4);
acc1 &= BN_MASK2l;
acc3 += acc2 >> BN_BITS4;
acc2 &= BN_MASK2l;
*out_r1 = (acc3 << BN_BITS4) | acc2;
*out_r0 = (acc1 << BN_BITS4) | acc0;
}
#endif
#endif
#ifndef HAVE_BN_MULW_LO
static inline BN_ULONG
bn_mulw_lo(BN_ULONG a, BN_ULONG b)
{
return a * b;
}
#endif
#ifndef HAVE_BN_MULW_HI
static inline BN_ULONG
bn_mulw_hi(BN_ULONG a, BN_ULONG b)
{
BN_ULONG h, l;
bn_mulw(a, b, &h, &l);
return h;
}
#endif
/*
* bn_mulw_addw() computes (r1:r0) = a * b + c with all inputs being single
* words, producing a double word result.
*/
#ifndef HAVE_BN_MULW_ADDW
static inline void
bn_mulw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1,
BN_ULONG *out_r0)
{
BN_ULONG carry, r1, r0;
bn_mulw(a, b, &r1, &r0);
bn_addw(r0, c, &carry, &r0);
r1 += carry;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_mulw_addw_addw() computes (r1:r0) = a * b + c + d with all inputs being
* single words, producing a double word result.
*/
#ifndef HAVE_BN_MULW_ADDW_ADDW
static inline void
bn_mulw_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG d,
BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG carry, r1, r0;
bn_mulw_addw(a, b, c, &r1, &r0);
bn_addw(r0, d, &carry, &r0);
r1 += carry;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_mulw_addtw() computes (r2:r1:r0) = a * b + (c2:c1:c0), where a and b are
* single words and (c2:c1:c0) is a triple word, producing a triple word result.
* The caller must ensure that the inputs provided do not result in c2
* overflowing.
*/
#ifndef HAVE_BN_MULW_ADDTW
static inline void
bn_mulw_addtw(BN_ULONG a, BN_ULONG b, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0,
BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG carry, r2, r1, r0, x1;
bn_mulw_addw(a, b, c0, &x1, &r0);
bn_addw(c1, x1, &carry, &r1);
r2 = c2 + carry;
*out_r2 = r2;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_mul2_mulw_addtw() computes (r2:r1:r0) = 2 * a * b + (c2:c1:c0), where a
* and b are single words and (c2:c1:c0) is a triple word, producing a triple
* word result. The caller must ensure that the inputs provided do not result
* in c2 overflowing.
*/
#ifndef HAVE_BN_MUL2_MULW_ADDTW
static inline void
bn_mul2_mulw_addtw(BN_ULONG a, BN_ULONG b, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0,
BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG r2, r1, r0, x1, x0;
BN_ULONG carry;
bn_mulw(a, b, &x1, &x0);
bn_addw(c0, x0, &carry, &r0);
bn_addw(c1, x1 + carry, &r2, &r1);
bn_addw(c2, r2, &carry, &r2);
bn_addw(r0, x0, &carry, &r0);
bn_addw(r1, x1 + carry, &carry, &r1);
r2 += carry;
*out_r2 = r2;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_qwmulw_addw() computes (r4:r3:r2:r1:r0) = (a3:a2:a1:a0) * b + c, where a
* is a quad word, b is a single word and c is a single word, producing a five
* word result.
*/
#ifndef HAVE_BN_QWMULW_ADDW
static inline void
bn_qwmulw_addw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b,
BN_ULONG c, BN_ULONG *out_r4, BN_ULONG *out_r3, BN_ULONG *out_r2,
BN_ULONG *out_r1, BN_ULONG *out_r0)
{
BN_ULONG r3, r2, r1, r0;
bn_mulw_addw(a0, b, c, &c, &r0);
bn_mulw_addw(a1, b, c, &c, &r1);
bn_mulw_addw(a2, b, c, &c, &r2);
bn_mulw_addw(a3, b, c, &c, &r3);
*out_r4 = c;
*out_r3 = r3;
*out_r2 = r2;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
/*
* bn_qwmulw_addqw_addw() computes
* (r4:r3:r2:r1:r0) = (a3:a2:a1:a0) * b + (c3:c2:c1:c0) + d, where a
* is a quad word, b is a single word, c is a quad word, and d is a single word,
* producing a five word result.
*/
#ifndef HAVE_BN_QWMULW_ADDQW_ADDW
static inline void
bn_qwmulw_addqw_addw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0,
BN_ULONG b, BN_ULONG c3, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0, BN_ULONG d,
BN_ULONG *out_r4, BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1,
BN_ULONG *out_r0)
{
BN_ULONG r3, r2, r1, r0;
bn_mulw_addw_addw(a0, b, c0, d, &d, &r0);
bn_mulw_addw_addw(a1, b, c1, d, &d, &r1);
bn_mulw_addw_addw(a2, b, c2, d, &d, &r2);
bn_mulw_addw_addw(a3, b, c3, d, &d, &r3);
*out_r4 = d;
*out_r3 = r3;
*out_r2 = r2;
*out_r1 = r1;
*out_r0 = r0;
}
#endif
#endif