NOCLIP/source/doodle.zig
torque 21af82acea
functioning subcommands
Fairly straightforward but only very lightly tested.
2023-03-30 00:29:46 -07:00

1153 lines
43 KiB
Zig

const std = @import("std");
const StructField = std.builtin.Type.StructField;
const converters = @import("./converters.zig");
const ncmeta = @import("./meta.zig");
const ConverterSignature = converters.ConverterSignature;
pub const ParseError = error{
UnexpectedFailure,
EmptyArgs,
MissingValue,
ExtraValue,
FusedShortTagValueMissing,
UnknownLongTagParameter,
UnknownShortTagParameter,
RequiredMissing,
ConversionFailed,
};
const ParameterType = enum {
Nominal,
Ordinal,
Executable,
};
// in theory, we could also have a flexible value count, which could be followed by
// any number of fixed args and be well-defined. `mv` is a classic example
// of this pattern. But putting that logic in the parser seems to add a lot of
// complexity for little gain. The `mv` use case can be much more easily handled
// with a multi value and then splitting in the value handler.
const ValueCount = union(enum) {
flag: void,
count: void,
fixed: u32,
};
const FlagBias = enum {
falsy,
truthy,
unbiased,
pub fn string(comptime self: @This()) []const u8 {
return switch (comptime self) {
.truthy => "true",
.falsy => "false",
else => @compileError("flag tag with unbiased bias?"),
};
}
};
pub const ParameterGenerics = struct {
UserContext: type = void,
OutputType: type = void,
param_type: ParameterType,
value_count: ValueCount,
/// allow this named parameter to be passed multiple times.
/// values will be appended when it is encountered. If false, only the
/// final encountered instance will be used.
multi: bool,
// since we now use multi in place of greedy values for simplicity, we may want to
// convert this an enum or add an additional flag to distinguish between the
// many-to-many and the many-to-one cases.
pub fn fixed_value_count(comptime OutputType: type, comptime value_count: ValueCount) ValueCount {
return comptime if (value_count == .fixed)
switch (@typeInfo(OutputType)) {
.Struct => |info| .{ .fixed = info.fields.len },
.Array => |info| .{ .fixed = info.len },
// TODO: this is a bit sloppy, but it can be refined later.
// .Pointer covers slices, which may be a many-to-many conversion.
.Pointer => value_count,
else => .{ .fixed = 1 },
}
else
value_count;
}
pub fn clone_without_multi(comptime self: @This()) @This() {
return .{ .UserContext = self.UserContext, .OutputType = self.OutputType, .param_type = self.param_type, .value_count = self.value_count, .multi = false };
}
pub fn has_context(comptime self: @This()) bool {
return comptime self.UserContext != void;
}
pub fn is_flag(comptime self: @This()) bool {
return comptime switch (self.value_count) {
.flag, .count => true,
.fixed => false,
};
}
pub fn ConvertedType(comptime self: @This()) type {
// is this the correct way to collapse this?
return comptime if (self.multi and self.value_count != .count)
std.ArrayList(self.ReturnValue())
else
self.ReturnValue();
}
pub fn IntermediateType(comptime self: @This()) type {
return comptime if (self.multi and self.value_count != .count)
std.ArrayList(self.IntermediateValue())
else
self.IntermediateValue();
}
pub fn ReturnValue(comptime self: @This()) type {
return comptime switch (self.value_count) {
.flag => bool,
.count => usize,
.fixed => |count| switch (count) {
0 => @compileError("bad fixed-zero parameter"),
1 => self.OutputType,
// it's actually impossible to use a list in the general case
// because the result may have varying types. A tuple would
// work, but cannot be iterated over without inline for. It may
// be worth adding a ".structured" value count for a type that
// consumes many inputs but produces a single output. It would
// be nice to parse a tag into a struct directly. For that use
// case, the output type must be decoupled from the input type.
else => self.OutputType,
},
};
}
pub fn IntermediateValue(comptime self: @This()) type {
return comptime switch (self.value_count) {
.flag => []const u8,
.count => usize,
.fixed => |count| switch (count) {
0 => @compileError("bad fixed-zero parameter"),
1 => []const u8,
else => std.ArrayList([]const u8),
},
};
}
pub fn nonscalar(comptime self: @This()) bool {
return comptime switch (self.value_count) {
.flag, .count => false,
.fixed => |count| switch (count) {
0 => @compileError("bad fixed-zero parameter"),
1 => false,
else => true,
},
};
}
};
fn OptionConfig(comptime generics: ParameterGenerics) type {
return struct {
name: []const u8,
short_tag: ?[]const u8 = null,
long_tag: ?[]const u8 = null,
env_var: ?[]const u8 = null,
description: []const u8 = "", // description for output in help text
default: ?generics.OutputType = null,
converter: ?ConverterSignature(generics) = null,
eager: bool = false,
required: bool = generics.param_type == .Ordinal,
global: bool = false,
exposed: bool = true,
secret: bool = false,
nice_type_name: []const u8 = @typeName(generics.OutputType),
flag_bias: FlagBias = .unbiased,
};
}
fn FlagConfig(comptime generics: ParameterGenerics) type {
const ShortLongPair = struct {
short_tag: ?[]const u8 = null,
long_tag: ?[]const u8 = null,
};
return struct {
name: []const u8,
truthy: ?ShortLongPair = null,
falsy: ?ShortLongPair = null,
env_var: ?[]const u8 = null,
description: []const u8 = "",
default: ?bool = null,
converter: ?ConverterSignature(generics) = null,
eager: bool = false,
required: bool = false,
global: bool = false,
exposed: bool = true,
secret: bool = false,
};
}
fn OptionType(comptime generics: ParameterGenerics) type {
return struct {
pub const G: ParameterGenerics = generics;
pub const param_type: ParameterType = generics.param_type;
pub const is_flag: bool = generics.is_flag();
pub const value_count: ValueCount = generics.value_count;
pub const multi: bool = generics.multi;
name: []const u8,
short_tag: ?[]const u8,
long_tag: ?[]const u8,
env_var: ?[]const u8,
/// description for output in help text
description: []const u8,
default: ?generics.OutputType,
converter: ConverterSignature(generics),
/// the option converter will be run eagerly, before full command line
/// validation.
eager: bool,
/// the option cannot be omitted from the command line.
required: bool,
/// this option is parsed in a pre-parsing pass that consumes it. It
/// may be present anywhere on the command line. A different way to
/// solve this problem is by using an environment variable. It must be
/// a tagged option.
global: bool,
/// if false, do not expose the resulting value in the output type.
/// the converter must have side effects for this option to do anything.
exposed: bool,
/// do not print help for this parameter
secret: bool,
/// friendly type name ("string" is better than "[]const u8")
nice_type_name: []const u8,
/// internal field for handling flag value biasing. Do not overwrite unless you
/// want weird things to happen.
flag_bias: FlagBias,
pub fn IntermediateValue(comptime _: @This()) type {
return generics.IntermediateValue();
}
};
}
fn check_short(comptime short_tag: ?[]const u8) void {
const short = comptime short_tag orelse return;
if (short.len != 2 or short[0] != '-') @compileError("bad short tag" ++ short);
}
fn check_long(comptime long_tag: ?[]const u8) void {
const long = comptime long_tag orelse return;
if (long.len < 3 or long[0] != '-' or long[1] != '-') @compileError("bad long tag" ++ long);
}
fn make_option(comptime generics: ParameterGenerics, comptime opts: OptionConfig(generics)) OptionType(generics) {
if (opts.short_tag == null and opts.long_tag == null and opts.env_var == null) {
@compileError(
"option " ++
opts.name ++
" must have at least one of a short tag, a long tag, or an environment variable",
);
}
check_short(opts.short_tag);
check_long(opts.long_tag);
// perform the logic to create the default converter here? Could be done
// when creating the OptionConfig instead. Need to do it here because there
// may be an error. That's the essential distinction between the OptionType
// and the OptionConfig, is the OptionConfig is just unvalidated parameters,
// whereas the OptionType is an instance of an object that has been
// validated.
const converter = opts.converter orelse
(converters.default_converter(generics) orelse @compileError(
"no converter provided for " ++
opts.name ++
"and no default exists",
));
return OptionType(generics){
.name = opts.name,
//
.short_tag = opts.short_tag,
.long_tag = opts.long_tag,
.env_var = opts.env_var,
//
.description = opts.description,
.default = opts.default,
.converter = converter,
//
.eager = opts.eager,
.required = opts.required,
.global = opts.global,
//
.exposed = opts.exposed,
.secret = opts.secret,
.nice_type_name = opts.nice_type_name,
.flag_bias = opts.flag_bias,
};
}
fn make_argument(
comptime generics: ParameterGenerics,
comptime opts: OptionConfig(generics),
) OptionType(generics) {
comptime {
if (opts.short_tag != null or opts.long_tag != null or opts.env_var != null) {
@compileError("argument " ++ opts.name ++ " must not have a long or short tag or an env var");
}
if (opts.global) {
@compileError("argument " ++ opts.name ++ " cannot be global");
}
const converter = opts.converter orelse
(converters.default_converter(generics) orelse @compileError(
"no converter provided for " ++
opts.name ++
"and no default exists",
));
return OptionType(generics){
.name = opts.name,
//
.short_tag = opts.short_tag,
.long_tag = opts.long_tag,
.env_var = opts.env_var,
//
.description = opts.description,
.default = opts.default,
.converter = converter,
//
.eager = opts.eager,
.required = opts.required,
.global = opts.global,
//
.exposed = opts.exposed,
.secret = opts.secret,
.nice_type_name = opts.nice_type_name,
.flag_bias = .unbiased,
};
}
}
fn BuilderGenerics(comptime UserContext: type) type {
return struct {
OutputType: type = void,
value_count: ValueCount = .{ .fixed = 1 },
multi: bool = false,
pub fn arg_gen(comptime self: @This()) ParameterGenerics {
if (self.OutputType == void) @compileError("argument must have OutputType specified");
if (self.value_count == .flag) @compileError("argument may not be a flag");
if (self.value_count == .count) @compileError("argument may not be a count");
return ParameterGenerics{
.UserContext = UserContext,
.OutputType = self.OutputType,
.param_type = .Ordinal,
.value_count = ParameterGenerics.fixed_value_count(self.OutputType, self.value_count),
.multi = self.multi,
};
}
pub fn opt_gen(comptime self: @This()) ParameterGenerics {
if (self.OutputType == void) @compileError("option must have OutputType specified");
if (self.value_count == .flag) @compileError("option may not be a flag");
return ParameterGenerics{
.UserContext = UserContext,
.OutputType = self.OutputType,
.param_type = .Nominal,
.value_count = ParameterGenerics.fixed_value_count(self.OutputType, self.value_count),
.multi = self.multi,
};
}
pub fn count_gen(comptime _: @This()) ParameterGenerics {
return ParameterGenerics{
.UserContext = UserContext,
.OutputType = usize,
.param_type = .Nominal,
.value_count = .count,
.multi = true,
};
}
pub fn flag_gen(comptime self: @This()) ParameterGenerics {
return ParameterGenerics{
.UserContext = UserContext,
.OutputType = bool,
.param_type = .Nominal,
.value_count = .flag,
.multi = self.multi,
};
}
};
}
fn CommandBuilder(comptime UserContext: type) type {
return struct {
param_spec: ncmeta.MutableTuple = .{},
pub const UserContextType = UserContext;
pub fn add_argument(
comptime self: *@This(),
comptime bgen: BuilderGenerics(UserContext),
comptime config: OptionConfig(bgen.arg_gen()),
) void {
self.param_spec.add(make_argument(bgen.arg_gen(), config));
}
pub fn add_option(
comptime self: *@This(),
comptime bgen: BuilderGenerics(UserContext),
comptime config: OptionConfig(bgen.opt_gen()),
) void {
if (comptime bgen.value_count == .fixed and bgen.value_count.fixed == 0) {
@compileError(
"please use add_flag rather than add_option to " ++
"create a 0-argument option",
);
}
self.param_spec.add(make_option(bgen.opt_gen(), config));
}
pub fn set_help_flag(
comptime self: *@This(),
comptime bgen: BuilderGenerics(UserContext),
comptime config: FlagConfig(bgen.flag_gen()),
) void {
_ = self;
_ = config;
}
pub fn add_flag(
comptime self: *@This(),
comptime bgen: BuilderGenerics(UserContext),
comptime config: FlagConfig(bgen.flag_gen()),
) void {
comptime {
if (config.truthy == null and config.falsy == null and config.env_var == null) {
@compileError(
"flag " ++
config.name ++
" must have at least one of truthy flags, falsy flags, or env_var flags",
);
}
const generics = bgen.flag_gen();
var args = OptionConfig(generics){
.name = config.name,
//
.short_tag = null,
.long_tag = null,
.env_var = null,
//
.description = config.description,
.default = config.default,
.converter = config.converter,
//
.eager = config.eager,
.required = config.required,
.global = config.global,
//
.exposed = config.exposed,
.secret = config.secret,
.nice_type_name = "flag",
};
if (config.truthy) |truthy_pair| {
if (truthy_pair.short_tag == null and truthy_pair.long_tag == null) {
@compileError(
"flag " ++
config.name ++
" truthy pair must have at least short or long tags set",
);
}
args.short_tag = truthy_pair.short_tag;
args.long_tag = truthy_pair.long_tag;
args.flag_bias = .truthy;
self.param_spec.add(make_option(generics, args));
}
if (config.falsy) |falsy_pair| {
if (falsy_pair.short_tag == null and falsy_pair.long_tag == null) {
@compileError(
"flag " ++
config.name ++
" falsy pair must have at least short or long tags set",
);
}
args.short_tag = falsy_pair.short_tag;
args.long_tag = falsy_pair.long_tag;
args.flag_bias = .falsy;
self.param_spec.add(make_option(generics, args));
}
if (config.env_var) |env_var| {
// @compileLog(env_var);
args.short_tag = null;
args.long_tag = null;
args.env_var = env_var;
args.flag_bias = .unbiased;
self.param_spec.add(make_option(generics, args));
}
}
}
fn generate(comptime self: @This()) self.param_spec.TupleType() {
return self.param_spec.realTuple();
}
pub fn CallbackSignature(comptime self: @This()) type {
return *const fn (*UserContext, self.Output()) anyerror!void;
}
pub fn Output(comptime self: @This()) type {
comptime {
const spec = self.generate();
var fields: []const StructField = &[0]StructField{};
var flag_skip = 0;
paramloop: for (spec, 0..) |param, idx| {
if (!param.exposed) continue :paramloop;
while (flag_skip > 0) {
flag_skip -= 1;
continue :paramloop;
}
const PType = @TypeOf(param);
if (PType.is_flag) {
var peek = idx + 1;
var bias_seen: [ncmeta.enum_length(FlagBias)]bool = [_]bool{false} ** ncmeta.enum_length(FlagBias);
bias_seen[@enumToInt(param.flag_bias)] = true;
while (peek < spec.len) : (peek += 1) {
const peek_param = spec[peek];
if (@TypeOf(peek_param).is_flag and std.mem.eql(u8, param.name, peek_param.name)) {
if (bias_seen[@enumToInt(peek_param.flag_bias)] == true) {
@compileError("redundant flag!!!! " ++ param.name);
} else {
bias_seen[@enumToInt(peek_param.flag_bias)] = true;
}
flag_skip += 1;
} else {
break;
}
}
}
// the default field is already the optional type. Stripping
// the optional wrapper is an interesting idea for required
// fields. I do not foresee this greatly increasing complexity here.
const FieldType = if (param.required)
PType.G.ConvertedType()
else
?PType.G.ConvertedType();
// the wacky comptime slice extension hack
fields = &(@as([fields.len]StructField, fields[0..fields.len].*) ++ [1]StructField{.{
.name = param.name,
.type = FieldType,
.default_value = @ptrCast(?*const anyopaque, &param.default),
.is_comptime = false,
.alignment = @alignOf(FieldType),
}});
}
return @Type(.{ .Struct = .{
.layout = .Auto,
.fields = fields,
.decls = &.{},
.is_tuple = false,
} });
}
}
pub fn Intermediate(comptime self: @This()) type {
comptime {
const spec = self.generate();
var fields: []const StructField = &[0]StructField{};
var flag_skip = 0;
paramloop: for (spec, 0..) |param, idx| {
while (flag_skip > 0) {
flag_skip -= 1;
continue :paramloop;
}
const PType = @TypeOf(param);
if (PType.is_flag) {
var peek = idx + 1;
var bias_seen: [ncmeta.enum_length(FlagBias)]bool = [_]bool{false} ** ncmeta.enum_length(FlagBias);
bias_seen[@enumToInt(param.flag_bias)] = true;
while (peek < spec.len) : (peek += 1) {
const peek_param = spec[peek];
if (@TypeOf(peek_param).is_flag and std.mem.eql(u8, param.name, peek_param.name)) {
if (bias_seen[@enumToInt(peek_param.flag_bias)] == true) {
@compileError("redundant flag!!!! " ++ param.name);
} else {
bias_seen[@enumToInt(peek_param.flag_bias)] = true;
}
flag_skip += 1;
} else {
break;
}
}
}
const FieldType = if (PType.value_count == .count)
PType.G.IntermediateType()
else
?PType.G.IntermediateType();
fields = &(@as([fields.len]StructField, fields[0..fields.len].*) ++ [1]StructField{.{
.name = param.name,
.type = FieldType,
.default_value = @ptrCast(
?*const anyopaque,
&@as(
FieldType,
if (PType.value_count == .count) 0 else null,
),
),
.is_comptime = false,
.alignment = @alignOf(?[]const u8),
}});
}
return @Type(.{ .Struct = .{
.layout = .Auto,
.fields = fields,
.decls = &.{},
.is_tuple = false,
} });
}
}
pub fn bind(
comptime self: @This(),
comptime callback: self.CallbackSignature(),
allocator: std.mem.Allocator,
) Parser(self, callback) {
return Parser(self, callback){
.allocator = allocator,
.subcommands = std.hash_map.StringHashMap(ParserInterface).init(allocator),
};
}
};
}
const ParserInterface = struct {
const Vtable = struct {
execute: *const fn (parser: *anyopaque, context: *anyopaque) anyerror!void,
parse: *const fn (parser: *anyopaque, context: *anyopaque, args: [][:0]u8, env: std.process.EnvMap) anyerror!void,
finish: *const fn (parser: *anyopaque, context: *anyopaque) anyerror!void,
};
parser: *anyopaque,
context: *anyopaque,
methods: *const Vtable,
pub fn execute(self: @This()) anyerror!void {
return try self.methods.execute(self.parser, self.context);
}
pub fn parse(self: @This(), args: [][:0]u8, env: std.process.EnvMap) anyerror!void {
return try self.methods.parse(self.parser, self.context, args, env);
}
pub fn finish(self: @This()) anyerror!void {
return try self.methods.finish(self.parser, self.context);
}
};
fn InterfaceGen(comptime ParserType: type, comptime UserContext: type) type {
return if (@typeInfo(UserContext) == .Void) struct {
pub fn interface(self: *ParserType) ParserInterface {
return .{
.parser = self,
.context = @constCast(&void{}),
.methods = &.{
.execute = ParserType.wrap_execute,
.parse = ParserType.wrap_parse,
.finish = ParserType.wrap_finish,
},
};
}
} else struct {
pub fn interface(self: *ParserType, context: *UserContext) ParserInterface {
return .{
.parser = self,
.context = context,
.methods = &.{
.execute = ParserType.wrap_execute,
.parse = ParserType.wrap_parse,
.finish = ParserType.wrap_finish,
},
};
}
};
}
// the parser is generated by the bind method of the CommandBuilder, so we can
// be extremely type-sloppy here, which simplifies the signature.
fn Parser(comptime command: anytype, comptime callback: anytype) type {
const UserContext = @TypeOf(command).UserContextType;
const Intermediate = command.Intermediate();
const Output = command.Output();
const parameters = command.generate();
return struct {
intermediate: Intermediate = .{},
output: Output = undefined,
consumed_args: u32 = 0,
progname: ?[]const u8 = null,
has_global_tags: bool = false,
allocator: std.mem.Allocator,
subcommands: std.hash_map.StringHashMap(ParserInterface),
subcommand: ?ParserInterface = null,
pub fn add_subcommand(self: *@This(), verb: []const u8, parser: ParserInterface) !void {
try self.subcommands.put(verb, parser);
}
// This is a slightly annoying hack to work around the fact that there's no way to
// provide a method signature conditionally.
pub usingnamespace InterfaceGen(@This(), UserContext);
fn wrap_execute(parser: *anyopaque, ctx: *anyopaque) anyerror!void {
const self = @ptrCast(*@This(), @alignCast(@alignOf(*@This()), parser));
// this is a slightly annoying hack to work around the problem that void has
// 0 alignment, which alignCast chokes on.
const context = if (@alignOf(UserContext) > 0)
@ptrCast(*UserContext, @alignCast(@alignOf(UserContext), ctx))
else
@ptrCast(*UserContext, ctx);
return try self.execute(context);
}
fn wrap_parse(parser: *anyopaque, ctx: *anyopaque, args: [][:0]u8, env: std.process.EnvMap) anyerror!void {
const self = @ptrCast(*@This(), @alignCast(@alignOf(@This()), parser));
const context = if (@alignOf(UserContext) > 0)
@ptrCast(*UserContext, @alignCast(@alignOf(UserContext), ctx))
else
@ptrCast(*UserContext, ctx);
return try self.subparse(context, args, env);
}
fn wrap_finish(parser: *anyopaque, ctx: *anyopaque) anyerror!void {
const self = @ptrCast(*@This(), @alignCast(@alignOf(@This()), parser));
const context = if (@alignOf(UserContext) > 0)
@ptrCast(*UserContext, @alignCast(@alignOf(UserContext), ctx))
else
@ptrCast(*UserContext, ctx);
return try self.finish(context);
}
pub fn subparse(self: *@This(), context: *UserContext, args: [][:0]u8, env: std.process.EnvMap) anyerror!void {
const sliceto = try self.parse(args);
try self.read_environment(env);
try self.convert(context);
inline for (@typeInfo(@TypeOf(self.intermediate)).Struct.fields) |field| {
if (@field(self.intermediate, field.name) == null) {
std.debug.print("{s}: null,\n", .{field.name});
} else {
std.debug.print("{s}: ", .{field.name});
self.print_value(@field(self.intermediate, field.name).?, "");
}
}
if (self.subcommand) |verb| try verb.parse(args[sliceto..], env);
}
pub fn finish(self: *@This(), context: *UserContext) anyerror!void {
try callback(context, self.output);
if (self.subcommand) |verb| try verb.finish();
}
pub fn execute(self: *@This(), context: *UserContext) anyerror!void {
const args = try std.process.argsAlloc(self.allocator);
defer std.process.argsFree(self.allocator, args);
var env = try std.process.getEnvMap(self.allocator);
defer env.deinit();
if (args.len < 1) return ParseError.EmptyArgs;
self.progname = args[0];
try self.subparse(context, args[1..], env);
try self.finish(context);
}
fn print_value(self: @This(), value: anytype, comptime indent: []const u8) void {
if (comptime @hasField(@TypeOf(value), "items")) {
std.debug.print("{s}[\n", .{indent});
for (value.items) |item| {
self.print_value(item, indent ++ " ");
}
std.debug.print("{s}]\n", .{indent});
} else {
std.debug.print("{s}{s}\n", .{ indent, value });
}
}
pub fn parse(
self: *@This(),
args: [][:0]u8,
) anyerror!usize {
// run pre-parse pass if we have any global parameters
// try self.preparse()
var forced_ordinal = false;
var argit = ncmeta.SliceIterator(@TypeOf(args)).wrap(args);
// there are a LOT of different parsing strategies that can be adopted to
// handle "incorrect" command lines. For example, a --long-style named
// argument could be parsed as an ordered argument if it doesn't match any
// of the specified tag names. However, if the user has not passed `--`
// then it's more likely the erroneous flag is a typo or some other
// erroneous input and should be treated as such. Similarly, handling the
// pair `--long-style --some-value`. if long_style takes one value,
// should --some-value be treated as the value, or should we assume the
// user forgot the value and is specifying a second tag? Getting too clever
// with context (e.g. checking if --some-value is a known tag name)
// probably also violates the principle of least astonishment, as if it
// doesn't match, it could very likely be a typo or other erroneous input.
// In this case we have an out, sort of, as --long-style=--some-value is
// unambiguous in purpose. However, this approach misses for short flags,
// unless we also support a -l=--some-value syntax, which I don't like and
// don't think is a common convention. In this case, I think it is
// reasonable to consume the value without getting fancy,
// e.g. -l --some-value produces 'long_style: "--some-value"'. Odds are, if
// the command line was specified incorrectly, the error will cascade
// through somewhere.
// another consideration is how to deal with mixed --named and positional
// arguments. Theoretically, fixed quantity positional arguments can be
// unambiguously interspersed with named arguments, but that feels sloppy.
// If a positional argument needs to start with --, we have the -- argument
// to force positional parsing.
argloop: while (argit.next()) |arg| {
if (!forced_ordinal and std.mem.eql(u8, arg, "--")) {
forced_ordinal = true;
continue :argloop;
}
if (!forced_ordinal and arg.len > 1 and arg[0] == '-') {
if (arg.len > 2 and arg[1] == '-') {
try self.parse_long_tag(arg, &argit);
continue :argloop;
} else if (arg.len > 1) {
for (arg[1..], 1..) |short, idx| {
try self.parse_short_tag(short, arg.len - idx - 1, &argit);
}
continue :argloop;
}
// if we've fallen through to here then we will be parsing ordinals
// exclusively from here on out.
forced_ordinal = true;
}
if (try self.parse_ordinals(arg, &argit)) |verb| {
self.subcommand = verb;
// TODO: return slice of remaining or offset index
return argit.index;
}
}
return 0;
}
inline fn parse_long_tag(
self: *@This(),
arg: []const u8,
argit: *ncmeta.SliceIterator([][:0]u8),
) ParseError!void {
inline for (comptime parameters) |param| {
const PType = @TypeOf(param);
// removing the comptime here causes the compiler to die
comptime if (PType.param_type != .Nominal or param.long_tag == null) continue;
const tag = param.long_tag.?;
if (std.mem.startsWith(u8, arg, tag)) match: {
if (arg.len == tag.len) {
try self.apply_param_values(param, argit, false);
} else if (arg[tag.len] == '=') {
try self.apply_fused_values(param, arg[tag.len + 1 ..]);
} else break :match;
return;
}
}
return ParseError.UnknownLongTagParameter;
}
inline fn parse_short_tag(
self: *@This(),
arg: u8,
remaining: usize,
argit: *ncmeta.SliceIterator([][:0]u8),
) ParseError!void {
inline for (comptime parameters) |param| {
const PType = @TypeOf(param);
// removing the comptime here causes the compiler to die
comptime if (PType.param_type != .Nominal or param.short_tag == null) continue;
const tag = param.short_tag.?;
if (arg == tag[1]) {
if (comptime !PType.is_flag)
if (remaining > 0)
return ParseError.FusedShortTagValueMissing;
try self.apply_param_values(param, argit, false);
return;
}
}
return ParseError.UnknownShortTagParameter;
}
inline fn parse_ordinals(
self: *@This(),
arg: []const u8,
argit: *ncmeta.SliceIterator([][:0]u8),
) ParseError!?ParserInterface {
comptime var arg_index: u32 = 0;
inline for (comptime parameters) |param| {
comptime if (@TypeOf(param).param_type != .Ordinal) continue;
if (self.consumed_args == arg_index) {
argit.rewind();
if (comptime @TypeOf(param).G.multi) {
while (argit.peek()) |_| try self.apply_param_values(param, argit, false);
} else {
try self.apply_param_values(param, argit, false);
}
self.consumed_args += 1;
return null;
}
arg_index += 1;
}
return self.subcommands.get(arg) orelse ParseError.ExtraValue;
}
inline fn push_intermediate_value(
self: *@This(),
comptime param: anytype,
// @TypeOf(param).G.IntermediateValue() should work but appears to trigger a
// compiler bug: expected pointer, found 'u1'
value: param.IntermediateValue(),
) ParseError!void {
const gen = @TypeOf(param).G;
if (comptime gen.multi) {
if (@field(self.intermediate, param.name) == null) {
@field(self.intermediate, param.name) = gen.IntermediateType().init(self.allocator);
}
@field(self.intermediate, param.name).?.append(value) catch return ParseError.UnexpectedFailure;
} else if (comptime @TypeOf(param).G.nonscalar()) {
if (@field(self.intermediate, param.name)) |list| list.deinit();
@field(self.intermediate, param.name) = value;
} else {
@field(self.intermediate, param.name) = value;
}
}
inline fn apply_param_values(
self: *@This(),
comptime param: anytype,
argit: anytype,
bounded: bool,
) ParseError!void {
switch (comptime @TypeOf(param).G.value_count) {
.flag => try self.push_intermediate_value(param, comptime param.flag_bias.string()),
.count => @field(self.intermediate, param.name) += 1,
.fixed => |count| switch (count) {
0 => return ParseError.ExtraValue,
1 => try self.push_intermediate_value(param, argit.next() orelse return ParseError.MissingValue),
else => |total| {
var list = std.ArrayList([]const u8).initCapacity(self.allocator, total) catch
return ParseError.UnexpectedFailure;
var consumed: u32 = 0;
while (consumed < total) : (consumed += 1) {
const next = argit.next() orelse return ParseError.MissingValue;
list.append(next) catch return ParseError.UnexpectedFailure;
}
if (bounded and argit.next() != null) return ParseError.ExtraValue;
try self.push_intermediate_value(param, list);
},
},
}
}
inline fn apply_fused_values(
self: *@This(),
comptime param: anytype,
value: []const u8,
) ParseError!void {
var iter = std.mem.split(u8, value, ",");
return try self.apply_param_values(param, &iter, true);
}
fn read_environment(self: *@This(), env: std.process.EnvMap) !void {
inline for (comptime parameters) |param| {
if (comptime param.env_var) |env_var| blk: {
if (@field(self.intermediate, param.name) != null) break :blk;
const val = env.get(env_var) orelse break :blk;
if (comptime @TypeOf(param).G.value_count == .flag) {
try self.push_intermediate_value(param, val);
} else {
try self.apply_fused_values(param, val);
}
}
}
}
fn convert(self: *@This(), context: *UserContext) ParseError!void {
inline for (comptime parameters) |param| {
if (comptime param.eager) {
try self.convert_param(param, context);
}
}
inline for (comptime parameters) |param| {
if (comptime !param.eager) {
try self.convert_param(param, context);
}
}
}
fn convert_param(self: *@This(), comptime param: anytype, context: *UserContext) ParseError!void {
if (@field(self.intermediate, param.name)) |intermediate| {
@field(self.output, param.name) = try param.converter(context, intermediate);
} else {
if (comptime param.required) {
return ParseError.RequiredMissing;
} else {
@field(self.output, param.name) = null;
return;
}
}
}
};
}
fn HelpBuilder(comptime command: anytype) type {
_ = command;
}
pub fn command_builder(comptime UserContext: type) CommandBuilder(UserContext) {
return CommandBuilder(UserContext){};
}
const Choice = enum { first, second };
const cli = cmd: {
var cmd = command_builder(u32);
cmd.add_option(.{ .OutputType = struct { u8, u8 } }, .{
.name = "test",
.short_tag = "-t",
.long_tag = "--test",
.env_var = "NOCLIP_TEST",
});
cmd.add_option(.{ .OutputType = Choice }, .{
.name = "choice",
.short_tag = "-c",
.long_tag = "--choice",
.env_var = "NOCLIP_CHOICE",
});
cmd.add_option(.{ .OutputType = u8, .multi = true }, .{
.name = "multi",
.short_tag = "-m",
.long_tag = "--multi",
.env_var = "NOCLIP_MULTI",
});
cmd.add_flag(.{}, .{
.name = "flag",
.truthy = .{ .short_tag = "-f", .long_tag = "--flag" },
.falsy = .{ .long_tag = "--no-flag" },
.env_var = "NOCLIP_FLAG",
});
cmd.add_flag(.{ .multi = true }, .{
.name = "multiflag",
.truthy = .{ .short_tag = "-M" },
.env_var = "NOCLIP_MULTIFLAG",
});
cmd.add_argument(.{ .OutputType = []const u8 }, .{
.name = "arg",
});
break :cmd cmd;
};
const subcommand = cmd: {
var cmd = command_builder(void);
cmd.add_flag(.{}, .{
.name = "flag",
.truthy = .{ .short_tag = "-f", .long_tag = "--flag" },
.falsy = .{ .long_tag = "--no-flag" },
.env_var = "NOCLIP_SUBFLAG",
});
cmd.add_argument(.{ .OutputType = []const u8 }, .{ .name = "argument" });
break :cmd cmd;
};
fn sub_handler(_: *void, result: subcommand.Output()) !void {
std.debug.print("subcommand: {s}\n", .{result.argument});
}
fn cli_handler(context: *u32, result: cli.Output()) !void {
_ = context;
// std.debug.print("callback is working {any}\n", .{result.multi.?.items});
// std.debug.print("callback is working {any}\n", .{result.multiflag.?.items});
std.debug.print("callback is working {any}\n", .{result.choice});
}
pub fn main() !void {
var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer arena.deinit();
const allocator = arena.allocator();
var parser = cli.bind(cli_handler, allocator);
var context: u32 = 2;
var subcon = subcommand.bind(sub_handler, allocator);
try parser.add_subcommand("verb", subcon.interface());
const iface = parser.interface(&context);
try iface.execute();
}