NOCLIP/source/noclip.zig

613 lines
23 KiB
Zig
Raw Normal View History

2022-11-20 12:54:26 -08:00
// Copyright (c) 2022 torque <torque@users.noreply.github.com>
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
// REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
// AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
// INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
// LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
// OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
const std = @import("std");
const StructField = std.builtin.Type.StructField;
const Brand = enum {
Option,
Flag,
Argument,
Command,
};
pub fn noopHandleGen(comptime ResultType: type) *const fn (buf: []const u8) anyerror!ResultType {
return struct {
pub fn handler(input: []const u8) anyerror!ResultType {
return input;
}
}.handler;
}
pub const noopHandler = noopHandleGen([]const u8);
pub const passthrough = noopHandler;
const noOptHandler = noopHandleGen(?[]const u8);
pub fn intHandler(comptime intType: type) *const fn (buf: []const u8) std.fmt.ParseIntError!intType {
return struct {
pub fn handler(buf: []const u8) std.fmt.ParseIntError!intType {
return try std.fmt.parseInt(intType, buf, 0);
}
}.handler;
}
pub fn intRadixHandler(comptime intType: type, radix: u8) *const fn (buf: []const u8) std.fmt.ParseIntError!intType {
return struct {
pub fn handler(buf: []const u8) std.fmt.ParseIntError!intType {
return try std.fmt.parseInt(intType, buf, radix);
}
}.handler;
}
pub const OptionError = error{
BadShortOption,
BadLongOption,
UnknownOption,
MissingOption,
MissingArgument,
ExtraArguments,
};
pub const ArgCountCategory = enum {
None,
Some,
Many,
};
pub const ArgCount = union(ArgCountCategory) {
None: void,
Some: u32,
Many: void,
};
pub fn ValuedOption(comptime resultType: type) type {
return struct {
pub fn brand(_: @This()) Brand {
return .Option;
}
name: []const u8,
// this fake optional is a workaround for a bug in the stage1 compiler
// (it doesn't handle nested optionals in struct fields correctly) and
// should be replaced with proper optionals as soon as stage2 is
// functional.
default: union(enum) { none: void, value: resultType } = .none,
// this is a combination conversion/validation callback.
// Should we try to pass a user context? Zig's bound functions
// don't seem to coerce nicely to this type, probably because
// they're no longer just a pointer. Any nontrivial type may need an
// allocator context passed.
handler: *const fn (input: []const u8) anyerror!resultType,
short: ?*const [2]u8 = null,
long: ?[]const u8 = null,
help: ?[]const u8 = null,
envVar: ?[]const u8 = null,
hideResult: bool = false,
eager: bool = false,
args: ArgCount = .{ .Some = 1 },
pub fn ResultType(comptime _: @This()) type {
return resultType;
}
pub fn required(self: @This()) bool {
return self.default == .none;
}
};
}
pub const StringOption = ValuedOption([]const u8);
// this could be ValuedOption(bool) except it allows truthy/falsy flag variants
// and it doesn't want to parse a value. It could be lowered into a pair of
// ValuedOption(bool) though, if consuming a value became optional.
const ShortLong = struct {
short: ?*const [2]u8 = null,
long: ?[]const u8 = null,
};
pub const FlagOption = struct {
pub fn brand(_: @This()) Brand {
return .Flag;
}
name: []const u8,
default: union(enum) { none: void, value: bool } = .{ .value = false },
truthy: ShortLong = .{},
falsy: ShortLong = .{},
help: ?[]const u8 = null,
// should envVar be split into truthy/falsy the way the args are? otherwise
// we probably need to peek the value of the environmental variable to see
// if it is truthy or falsy. Honestly, looking at the value is probably
// required to avoid violating the principle of least astonishment because
// otherwise you can get `MY_VAR=false` causing `true` to be emitted, which
// looks and feels bad. But then we need to establish a truthiness baseline.
// case insensitive true/false is easy. What about yes/no? 0/1 (or nonzero).
// How about empty strings? I'd base on how it reads, and `MY_VAR= prog`
// reads falsy to me.
envVar: ?[]const u8 = null,
hideResult: bool = false,
eager: ?*const fn (cmd: CommandData) anyerror!void = null,
pub fn ResultType(comptime _: @This()) type {
return bool;
}
pub fn required(self: @This()) bool {
return self.default == .none;
}
};
pub fn produceHelp(cmd: CommandData) !void {
std.debug.print("{s}", .{cmd.help});
std.process.exit(0);
}
// I haven't really figured out a way not to special case the help flag.
// Everything else assumes that it can be handled in a vacuum without worrying
// about intermediates (and must be so, as we don't have a deterministic order
// for assembling the result. We could make the parse order deterministic, but
// I suspect it would require increasing the parser complexity a fair amount).
// Flag types are created on the fly, so we can only actually hand pre-composed
// help text to whatever callback this provides.
const HelpFlagArgs = struct {
name: []const u8 = "help",
short: ?*const [2]u8 = "-h",
long: ?[]const u8 = "--help",
help: []const u8 = "print this help message",
};
// this doesn't work in situ,
pub fn HelpFlag(comptime args: HelpFlagArgs) FlagOption {
return FlagOption{
.name = args.name,
.truthy = .{ .short = args.short, .long = args.long },
.help = args.help,
.hideResult = true,
.eager = produceHelp,
};
}
// but this does, which is kind of silly.
pub const defaultHelpFlag = HelpFlag(.{});
pub fn Argument(comptime resultType: type) type {
return struct {
pub fn brand(_: @This()) Brand {
return .Argument;
}
name: []const u8,
default: union(enum) { none: void, value: resultType } = .none,
handler: *const fn (input: []const u8) anyerror!resultType,
help: ?[]const u8 = null,
hideResult: bool = false,
// allow loading arguments from environmental variables? I don't think
// it's possible to come up with sane semantics for this.
pub fn ResultType(comptime _: @This()) type {
return resultType;
}
pub fn required(self: @This()) bool {
return self.default == .none;
}
};
}
pub const StringArg = Argument([]const u8);
pub const CommandData = struct {
name: []const u8,
help: []const u8 = "",
// cheesy way to allow deferred initialization of the subcommands
subcommands: ?std.ArrayList(*CommandData) = null,
};
/// spec is a tuple of ValuedOption, FlagOption, and Argument
pub fn Command(
comptime commandData: CommandData,
comptime spec: anytype,
comptime UdType: type,
comptime callback: *const fn (userdata: UdType, res: CommandResult(spec)) anyerror!void,
) type {
comptime var argCount = 0;
comptime var requiredOptions = 0;
comptime for (spec) |param| {
switch (param.brand()) {
.Argument => argCount += 1,
.Option, .Flag => if (param.required()) {
requiredOptions += 1;
},
.Command => continue,
}
};
const ResultType = CommandResult(spec);
const RequiredType = RequiredTracker(spec);
const ParseState = enum { Mixed, ForcedArgs };
return struct {
pub fn brand() Brand {
return .Command;
}
// copy happens at comptime
pub var data: CommandData = commandData;
/// parse command line arguments from an iterator
pub fn execute(alloc: std.mem.Allocator, comptime argit_type: type, argit: *argit_type, userdata: UdType) !void {
// we could precompute some tuples that would simplify some of the later logic:
// tuple of eager Options/Flags
// tuple of non-eager Options/Flags
// tuple of Arguments
// tuple of Commands
var result: ResultType = createCommandresult();
var required: RequiredType = .{};
var parseState: ParseState = .Mixed;
try extractEnvVars(alloc, &result, &required);
var seenArgs: u32 = 0;
argloop: while (argit.next()) |arg| {
if (parseState == .Mixed and arg.len > 1 and arg[0] == '-') {
if (std.mem.eql(u8, "--", arg)) {
// TODO: the way this works, -- only forces argument
// parsing until a subcommand is found. This seems
// reasonable to me, but it may be unexpected that
// `command -a -- subcommand -b` parses b as an option
// flag. We could propagate the forced args flag to
// subcommands, but I'm not sure that would be better.
//
// Another option is to stop parsing altogether when --
// is hit, but that means that subcommands cannot be
// invoked at the same time as forced arguments, which
// seems worse somehow, as it affects macroscopic CLI
// behavior.
parseState = .ForcedArgs;
continue :argloop;
}
if (arg[1] == '-') {
// we have a long flag or option
specloop: inline for (spec) |param| {
switch (comptime param.brand()) {
.Option => {
// have to force lower the handler to runtime
var handler = param.handler;
if (param.long) |flag| {
if (std.mem.eql(u8, flag, arg)) {
if (comptime param.required()) {
@field(required, param.name) = true;
}
const val = argit.next() orelse return OptionError.MissingArgument;
if (param.hideResult == false) {
@field(result, param.name) = try handler(val);
}
continue :argloop;
}
}
},
.Flag => {
inline for (.{ .{ param.truthy.long, true }, .{ param.falsy.long, false } }) |variant| {
if (variant[0]) |flag| {
if (std.mem.eql(u8, flag, arg)) {
if (param.eager) |handler| {
try handler(data);
}
if (comptime param.required()) {
@field(required, param.name) = true;
}
if (param.hideResult == false) {
@field(result, param.name) = variant[1];
}
continue :argloop;
}
}
}
},
.Argument, .Command => continue :specloop,
}
}
// nothing matched
return OptionError.UnknownOption;
} else {
// we have a short flag, which may be multiple fused flags
shortloop: for (arg[1..]) |shorty, idx| {
specloop: inline for (spec) |param| {
switch (comptime param.brand()) {
.Option => {
var handler = param.handler;
if (param.short) |flag| {
if (flag[1] == shorty) {
if (comptime param.required()) {
@field(required, param.name) = true;
}
const val = if (arg.len > (idx + 2))
arg[(idx + 2)..]
else
argit.next() orelse return OptionError.MissingArgument;
if (param.hideResult == false) {
@field(result, param.name) = try handler(val);
}
continue :argloop;
}
}
},
.Flag => {
inline for (.{ .{ param.truthy.short, true }, .{ param.falsy.short, false } }) |variant| {
if (variant[0]) |flag| {
if (flag[1] == shorty) {
if (param.eager) |handler| {
try handler(data);
}
if (comptime param.required()) {
@field(required, param.name) = true;
}
if (param.hideResult == false) {
@field(result, param.name) = variant[1];
}
continue :shortloop;
}
}
}
},
.Argument, .Command => continue :specloop,
}
}
// nothing matched
return OptionError.UnknownOption;
}
}
} else {
// we have a subcommand or an Argument. Arguments are parsed first, exclusively.
defer seenArgs += 1;
comptime var idx = 0;
inline for (spec) |param| {
switch (comptime param.brand()) {
.Argument => {
if (seenArgs == idx) {
var handler = param.handler;
@field(result, param.name) = try handler(arg);
continue :argloop;
}
idx += 1;
},
.Command => {
if (seenArgs == argCount and std.mem.eql(u8, param.data.name, arg)) {
// we're calling a subcommand
try checkErrors(seenArgs, required);
try callback(userdata, result);
return param.execute(alloc, argit_type, argit, userdata);
}
},
else => continue,
}
}
}
}
try checkErrors(seenArgs, required);
try callback(userdata, result);
}
inline fn checkErrors(seenArgs: u32, required: RequiredType) OptionError!void {
if (seenArgs < argCount) {
return OptionError.MissingArgument;
} else if (seenArgs > argCount) {
return OptionError.ExtraArguments;
}
inline for (@typeInfo(@TypeOf(required)).Struct.fields) |field| {
if (@field(required, field.name) == false) {
return OptionError.MissingOption;
}
}
}
fn attachSubcommands(alloc: std.mem.Allocator) !void {
if (data.subcommands == null) {
data.subcommands = std.ArrayList(*CommandData).init(alloc);
}
inline for (spec) |param| {
switch (comptime param.brand()) {
.Command => {
try data.subcommands.append(&param);
},
else => continue,
}
}
}
fn scryTruthiness(alloc: std.mem.Allocator, input: []const u8) !bool {
// empty string is falsy.
if (input.len == 0) return false;
if (input.len <= 5) {
const comp = try std.ascii.allocLowerString(alloc, input);
defer alloc.free(comp);
inline for ([_][]const u8{ "false", "no", "0" }) |candidate| {
if (std.mem.eql(u8, comp, candidate)) {
return false;
}
}
}
// TODO: actually try float conversion on input string? This seems
// really silly to me, in the context of the shell, but for example
// MY_VAR=0 evaluates to false but MY_VAR=0.0 evaluates to true. And
// if we accept multiple representations of zero, a whole can of
// worms gets opened. Should 0x0 be falsy? 0o0? That's a lot of
// goofy edge cases.
// any nonempty value is considered to be truthy.
return true;
}
fn extractEnvVars(alloc: std.mem.Allocator, result: *ResultType, required: *RequiredType) !void {
var env: std.process.EnvMap = try std.process.getEnvMap(alloc);
defer env.deinit();
inline for (spec) |param| {
switch (comptime param.brand()) {
.Option => {
if (param.envVar) |want| {
if (env.get(want)) |value| {
if (comptime param.required()) {
@field(required, param.name) = true;
}
var handler = param.handler;
@field(result, param.name) = try handler(value);
}
}
},
.Flag => {
if (param.envVar) |want| {
if (env.get(want)) |value| {
if (comptime param.required()) {
@field(required, param.name) = true;
}
@field(result, param.name) = try scryTruthiness(alloc, value);
}
}
},
.Argument, .Command => continue,
}
}
}
inline fn createCommandresult() ResultType {
var result: ResultType = undefined;
inline for (spec) |param| {
switch (comptime param.brand()) {
.Command => continue,
else => if (param.hideResult == false) {
@field(result, param.name) = switch (param.default) {
.none => continue,
.value => |val| val,
};
},
}
}
return result;
}
};
}
pub fn CommandResult(comptime spec: anytype) type {
comptime {
// not sure how to do this without iterating twice, so let's iterate
// twice
var outsize = 0;
for (spec) |param| {
switch (param.brand()) {
.Command => continue,
else => if (param.hideResult == false) {
outsize += 1;
},
}
}
var fields: [outsize]StructField = undefined;
var idx = 0;
for (spec) |param| {
switch (param.brand()) {
.Command => continue,
else => if (param.hideResult == true) continue,
}
const fieldType = param.ResultType();
fields[idx] = .{
.name = param.name,
.field_type = fieldType,
.default_value = switch (param.default) {
.none => null,
.value => |val| @ptrCast(?*const anyopaque, &val),
},
.is_comptime = false,
.alignment = @alignOf(fieldType),
};
idx += 1;
}
return @Type(.{ .Struct = .{
.layout = .Auto,
.fields = &fields,
.decls = &.{},
.is_tuple = false,
} });
}
}
fn RequiredTracker(comptime spec: anytype) type {
comptime {
// not sure how to do this without iterating twice, so let's iterate
// twice
var outsize = 0;
for (spec) |param| {
switch (param.brand()) {
.Argument, .Command => continue,
else => {
if (param.required()) outsize += 1;
},
}
}
var fields: [outsize]StructField = undefined;
var idx = 0;
for (spec) |param| {
switch (param.brand()) {
.Argument, .Command => continue,
else => if (param.required()) {
fields[idx] = .{
.name = param.name,
.field_type = bool,
.default_value = &false,
.is_comptime = false,
.alignment = @alignOf(bool),
};
idx += 1;
},
}
}
return @Type(.{ .Struct = .{
.layout = .Auto,
.fields = &fields,
.decls = &.{},
.is_tuple = false,
} });
}
}